首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 开发语言 > 编程 >

双重检察锁定与延迟初始化

2013-10-25 
双重检查锁定与延迟初始化如上图所示,只要保证2排在4的前面,即使2和3之间重排序了,也不会违反intra-thread

双重检查锁定与延迟初始化

如上图所示,只要保证2排在4的前面,即使2和3之间重排序了,也不会违反intra-thread semantics。

下面,再让我们看看多线程并发执行的时候的情况。请看下面的示意图:

双重检察锁定与延迟初始化

由于单线程内要遵守intra-thread semantics,从而能保证A线程的程序执行结果不会被改变。但是当线程A和B按上图的时序执行时,B线程将看到一个还没有被初始化的对象。

※注:本文统一用红色的虚箭线标识错误的读操作,用绿色的虚箭线标识正确的读操作。

回到本文的主题,DoubleCheckedLocking示例代码的第7行(instance = new Singleton();)如果发生重排序,另一个并发执行的线程B就有可能在第4行判断instance不为null。线程B接下来将访问instance所引用的对象,但此时这个对象可能还没有被A线程初始化!下面是这个场景的具体执行时序:

时间

线程A

线程B

t1

A1:分配对象的内存空间

?

t2

A3:设置instance指向内存空间

?

t3

?

B1:判断instance是否为空

t4

?

B2:由于instance不为null,线程B将访问instance引用的对象

t5

A2:初始化对象

?

t6

A4:访问instance引用的对象

?

?

这里A2和A3虽然重排序了,但java内存模型的intra-thread semantics将确保A2一定会排在A4前面执行。因此线程A的intra-thread semantics没有改变。但A2和A3的重排序,将导致线程B在B1处判断出instance不为空,线程B接下来将访问instance引用的对象。此时,线程B将会访问到一个还未初始化的对象。

在知晓了问题发生的根源之后,我们可以想出两个办法来实现线程安全的延迟初始化:

  1. 不允许2和3重排序;
  2. 允许2和3重排序,但不允许其他线程“看到”这个重排序。

后文介绍的两个解决方案,分别对应于上面这两点。

基于volatile的双重检查锁定的解决方案

对于前面的基于双重检查锁定来实现延迟初始化的方案(指DoubleCheckedLocking示例代码),我们只需要做一点小的修改(把instance声明为volatile型),就可以实现线程安全的延迟初始化。请看下面的示例代码:

public class SafeDoubleCheckedLocking {    private volatile static Instance instance;    public static Instance getInstance() {        if (instance == null) {            synchronized (SafeDoubleCheckedLocking.class) {                if (instance == null)                    instance = new Instance();//instance为volatile,现在没问题了            }        }        return instance;    }}

注意,这个解决方案需要JDK5或更高版本(因为从JDK5开始使用新的JSR-133内存模型规范,这个规范增强了volatile的语义)。

当声明对象的引用为volatile后,“问题的根源”的三行伪代码中的2和3之间的重排序,在多线程环境中将会被禁止。上面示例代码将按如下的时序执行:

双重检察锁定与延迟初始化

这个方案本质上是通过禁止上图中的2和3之间的重排序,来保证线程安全的延迟初始化。

基于类初始化的解决方案

JVM在类的初始化阶段(即在Class被加载后,且被线程使用之前),会执行类的初始化。在执行类的初始化期间,JVM会去获取一个锁。这个锁可以同步多个线程对同一个类的初始化。

基于这个特性,可以实现另一种线程安全的延迟初始化方案(这个方案被称之为Initialization On Demand Holder idiom):

public class InstanceFactory {    private static class InstanceHolder {        public static Instance instance = new Instance();    }    public static Instance getInstance() {        return InstanceHolder.instance ;  //这里将导致InstanceHolder类被初始化    }}

假设两个线程并发执行getInstance(),下面是执行的示意图:

双重检察锁定与延迟初始化

这个方案的实质是:允许“问题的根源”的三行伪代码中的2和3重排序,但不允许非构造线程(这里指线程B)“看到”这个重排序。

初始化一个类,包括执行这个类的静态初始化和初始化在这个类中声明的静态字段。根据java语言规范,在首次发生下列任意一种情况时,一个类或接口类型T将被立即初始化:

  • T是一个类,而且一个T类型的实例被创建;
  • T是一个类,且T中声明的一个静态方法被调用;
  • T中声明的一个静态字段被赋值;
  • T中声明的一个静态字段被使用,而且这个字段不是一个常量字段;
  • T是一个顶级类(top level class,见java语言规范的§7.6),而且一个断言语句嵌套在T内部被执行。

    在InstanceFactory示例代码中,首次执行getInstance()的线程将导致InstanceHolder类被初始化(符合情况4)。

    由于java语言是多线程的,多个线程可能在同一时间尝试去初始化同一个类或接口(比如这里多个线程可能在同一时刻调用getInstance()来初始化InstanceHolder类)。因此在java中初始化一个类或者接口时,需要做细致的同步处理。

    Java语言规范规定,对于每一个类或接口C,都有一个唯一的初始化锁LC与之对应。从C到LC的映射,由JVM的具体实现去自由实现。JVM在类初始化期间会获取这个初始化锁,并且每个线程至少获取一次锁来确保这个类已经被初始化过了(事实上,java语言规范允许JVM的具体实现在这里做一些优化,见后文的说明)。

    对于类或接口的初始化,java语言规范制定了精巧而复杂的类初始化处理过程。java初始化一个类或接口的处理过程如下(这里对类初始化处理过程的说明,省略了与本文无关的部分;同时为了更好的说明类初始化过程中的同步处理机制,笔者人为的把类初始化的处理过程分为了五个阶段):

    第一阶段:通过在Class对象上同步(即获取Class对象的初始化锁),来控制类或接口的初始化。这个获取锁的线程会一直等待,直到当前线程能够获取到这个初始化锁。

    假设Class对象当前还没有被初始化(初始化状态state此时被标记为state = noInitialization),且有两个线程A和B试图同时初始化这个Class对象。下面是对应的示意图:

    双重检察锁定与延迟初始化

    下面是这个示意图的说明:

    时间

    线程A

    线程B

    t1

    A1:尝试获取Class对象的初始化锁。这里假设线程A获取到了初始化锁

    B1:尝试获取Class对象的初始化锁,由于线程A获取到了锁,线程B将一直等待获取初始化锁

    t2

    A2:线程A看到线程还未被初始化(因为读取到state == noInitialization),线程设置state = initializing

    ?

    t3

    A3:线程A释放初始化锁

    ?

    ?

    第二阶段:线程A执行类的初始化,同时线程B在初始化锁对应的condition上等待:

    双重检察锁定与延迟初始化

    下面是这个示意图的说明:

    时间

    线程A

    线程B

    t1

    A1:执行类的静态初始化和初始化类中声明的静态字段

    B1:获取到初始化锁

    t2

    ?

    B2:读取到state == initializing

    t3

    ?

    B3:释放初始化锁

    t4

    ?

    B4:在初始化锁的condition中等待

    ?

    第三阶段:线程A设置state = initialized,然后唤醒在condition中等待的所有线程:

    双重检察锁定与延迟初始化

    下面是这个示意图的说明:

    时间

    线程A

    t1

    A1:获取初始化锁

    t2

    A2:设置state = initialized

    t3

    A3:唤醒在condition中等待的所有线程

    t4

    A4:释放初始化锁

    t5

    A5:线程A的初始化处理过程完成

    ?

    第四阶段:线程B结束类的初始化处理:

    双重检察锁定与延迟初始化

    下面是这个示意图的说明:

    时间

    线程B

    t1

    B1:获取初始化锁

    t2

    B2:读取到state == initialized

    t3

    B3:释放初始化锁

    t4

    B4:线程B的类初始化处理过程完成

    ?

    线程A在第二阶段的A1执行类的初始化,并在第三阶段的A4释放初始化锁;线程B在第四阶段的B1获取同一个初始化锁,并在第四阶段的B4之后才开始访问这个类。根据java内存模型规范的锁规则,这里将存在如下的happens-before关系:

    双重检察锁定与延迟初始化

    这个happens-before关系将保证:线程A执行类的初始化时的写入操作(执行类的静态初始化和初始化类中声明的静态字段),线程B一定能看到。

    第五阶段:线程C执行类的初始化的处理:

    双重检察锁定与延迟初始化

    下面是这个示意图的说明:

    时间

    线程B

    t1

    C1:获取初始化锁

    t2

    C2:读取到state == initialized

    t3

    C3:释放初始化锁

    t4

    C4:线程C的类初始化处理过程完成

    ?

    在第三阶段之后,类已经完成了初始化。因此线程C在第五阶段的类初始化处理过程相对简单一些(前面的线程A和B的类初始化处理过程都经历了两次锁获取-锁释放,而线程C的类初始化处理只需要经历一次锁获取-锁释放)。

    线程A在第二阶段的A1执行类的初始化,并在第三阶段的A4释放锁;线程C在第五阶段的C1获取同一个锁,并在在第五阶段的C4之后才开始访问这个类。根据java内存模型规范的锁规则,这里将存在如下的happens-before关系:

    双重检察锁定与延迟初始化

    这个happens-before关系将保证:线程A执行类的初始化时的写入操作,线程C一定能看到。

    ※注1:这里的condition和state标记是本文虚构出来的。Java语言规范并没有硬性规定一定要使用condition和state标记。JVM的具体实现只要实现类似功能即可。

    ※注2:Java语言规范允许Java的具体实现,优化类的初始化处理过程(对这里的第五阶段做优化),具体细节参见java语言规范的12.4.2章。

    通过对比基于volatile的双重检查锁定的方案和基于类初始化的方案,我们会发现基于类初始化的方案的实现代码更简洁。但基于volatile的双重检查锁定的方案有一个额外的优势:除了可以对静态字段实现延迟初始化外,还可以对实例字段实现延迟初始化。

    总结

    延迟初始化降低了初始化类或创建实例的开销,但增加了访问被延迟初始化的字段的开销。在大多数时候,正常的初始化要优于延迟初始化。如果确实需要对实例字段使用线程安全的延迟初始化,请使用上面介绍的基于volatile的延迟初始化的方案;如果确实需要对静态字段使用线程安全的延迟初始化,请使用上面介绍的基于类初始化的方案。

热点排行