首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 其他教程 > 其他相关 >

简要解析模拟退火算法以及利用它求解TSP有关问题

2013-10-24 
简要解析模拟退火算法以及利用它求解TSP问题模拟退火(SA,Simulated Annealing)思想模拟退火算是一种贪心算

简要解析模拟退火算法以及利用它求解TSP问题

模拟退火(SA,Simulated Annealing)思想

         模拟退火算是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。

         算法描述:

         若J( Y(i+1) )>= J( Y(i) )  (即移动后得到更优解),则总是接受该移动

         若J( Y(i+1) )< J( Y(i) )  (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)

  这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。

  根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:

    P(dE) = exp( dE/(kT) )

  其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。

  随着温度T的降低,P(dE)会逐渐降低。

  我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。


下面给出模拟退火的伪代码表示。

/** J(y):在状态y时的评价函数值* Y(i):表示当前状态* Y(i+1):表示新的状态* r: 用于控制降温的快慢* T: 系统的温度,系统初始应该要处于一个高温的状态* T_min :温度的下限,若温度T达到T_min,则停止搜索*/while( T > T_min ){  dE = J( Y(i+1) ) - J( Y(i) ) ;   if ( dE >=0 ) //表达移动后得到更优解,则总是接受移动Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动  else  {// 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也if ( exp( dE/T ) > random( 0 , 1 ) )Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动  }  T = r * T ; //降温退火 ,0<r<1 。r越大,降温越慢;r越小,降温越快  /*  * 若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值  */  i ++ ;}

使用模拟退火算法解决旅行商问题

  旅行商问题 ( TSP , Traveling Salesman Problem ) :有N个城市,要求从其中某个问题出发,唯一遍历所有城市,再回到出发的城市,求最短的路线。

  旅行商问题属于所谓的NP完全问题,精确的解决TSP只能通过穷举所有的路径组合,其时间复杂度是O(N!) 。

  使用模拟退火算法可以比较快的求出TSP的一条近似最优路径。(使用遗传算法亦可)算法思路:

1. 产生一条新的遍历路径P(i+1),计算路径P(i+1)的长度L( P(i+1) )

2. 若L(P(i+1)) < L(P(i))  /*初始设定LP(i)为适当值*/ ,则接受P(i+1)为新的路径,否则以模拟退火的那个概率接受P(i+1) ,然后降温

3. 重复步骤1,2直到满足退出条件

  产生新的遍历路径的方法有很多,如:

1. 随机选择2个节点,交换路径中的这2个节点的顺序。

2. 随机选择2个节点,将路径中这2个节点间的节点顺序逆转。

 

算法评价

        模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。 如果参数设置得当,模拟退火算法搜索效率比穷举法要高得多。


1楼wangqiuyun昨天 16:22
不错,看看我写的http://blog.csdn.net/wangqiuyun/article/details/8918523
Re: zzhtheone昨天 20:28
回复wangqiuyunn恩恩你的写的也不错,谢谢

热点排行