首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 开发语言 > 编程 >

Uva - 12304 - 2D Geometry 110 in 一

2013-10-06 
Uva - 12304 - 2D Geometry 110 in 1!题意:在二维平面上求解6个子问题:1.三角形的外接圆;2.三角形的内切圆

Uva - 12304 - 2D Geometry 110 in 1!

题意:在二维平面上求解6个子问题:

1.三角形的外接圆;

2.三角形的内切圆;

3.点到圆的切线;

4.过定点且与定直线相切的半径为r的圆;

5.同时与两相交直线相切的半径为r的圆;

6.同时与两相离圆相切的半径为r的圆。

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=24008

——>>做到第4小问的时候,出现了一个精度问题:本来用dcmp(delta) == 0来判断直线与圆相切,可以在此处硬是不正确。。。书中有言:“圆和直线相切的判定很容易受到误差影响,因为这里的直线是计算出来的,而不是题目中输入的。”。。。所以——“特殊判断圆心到输入直线的距离”(“当然也可以通过调整eps的数值来允许一定的误差,但不推荐这样做。调节eps只是掩盖了问题,并没有消除“)。

代码虽长,但1A啦。。。Uva - 12304 - 2D Geometry 110 in 一

#include <cstdio>#include <cmath>#include <cstring>#include <algorithm>#include <vector>using namespace std;const int maxn = 50;const double eps = 1e-10;        //调到1e-6以上第4问就可以用delta判断切线,但《训练指南》建议,尽量不要调epsconst double pi = acos(-1);char type[maxn];int dcmp(double x){    return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1);}struct Point{    double x;    double y;    Point(double x = 0, double y = 0):x(x), y(y){}    bool operator < (const Point& e) const{        return dcmp(x - e.x) < 0 || (dcmp(x - e.x) == 0 && dcmp(y - e.y) < 0);    }    bool operator == (const Point& e) const{        return dcmp(x - e.x) == 0 && dcmp(y - e.y) == 0;    }    int read(){        return scanf("%lf%lf", &x, &y);    }}p[3];typedef Point Vector;Vector operator + (Point A, Point B){    return Vector(A.x + B.x, A.y + B.y);}Vector operator - (Point A, Point B){    return Vector(A.x - B.x, A.y - B.y);}Vector operator * (Point A, double p){    return Vector(A.x * p, A.y * p);}Vector operator / (Point A, double p){    return Vector(A.x / p, A.y / p);}struct Line{    Point p;    Point v;    Line(){}    Line(Point p, Point v):p(p), v(v){}    int read(){        return scanf("%lf%lf%lf%lf", &p.x, &p.y, &v.x, &v.y);    }    Point point(double t){        return p + v * t;    }};struct Circle{    Point c;    double r;    Circle(){}    Circle(Point c, double r):c(c), r(r){}    int read(){        return scanf("%lf%lf%lf", &c.x, &c.y, &r);    }    Point point(double a){        return Point(c.x + r * cos(a), c.y + r * sin(a));    }};double Dot(Vector A, Vector B){    return A.x * B.x + A.y * B.y;}double Cross(Vector A, Vector B){    return A.x * B.y - B.x * A.y;}double Length(Vector A){    return sqrt(Dot(A, A));}Vector Rotate(Vector A, double rad){    return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));}Vector Normal(Vector A){    double L = Length(A);    return Vector(-A.y / L, A.x / L);}double DistanceToLine(Point P, Point A, Point B){       //点到直线的距离    Vector v1 = B - A;    Vector v2 = P - A;    return fabs(Cross(v1, v2) / Length(v1));}double angle(Vector v){     //求向量的极角    return atan2(v.y, v.x);}Point GetLineIntersection(Line l1, Line l2){        //求两直线的交点(前提:相交)    Vector u = l1.p - l2.p;    double t = Cross(l2.v, u) / Cross(l1.v, l2.v);    return l1.point(t);}int getLineCircleIntersection(Line l, Circle C, double& t1, double& t2, vector<Point>& sol){        //求直线与圆的交点    double a = l.v.x;    double b = l.p.x - C.c.x;    double c = l.v.y;    double d = l.p.y - C.c.y;    double e = a * a + c * c;    double f = 2 * (a * b + c * d);    double g = b * b + d * d - C.r * C.r;    double delta = f * f - 4 * e * g;    double dist = DistanceToLine(C.c, l.p, l.p+l.v);    if(dcmp(dist - C.r) == 0){      //相切,此处需特殊判断,不能用delta        t1 = t2 = -f / (2 * e);        sol.push_back(l.point(t1));        return 1;    }    if(dcmp(delta) < 0) return 0;       //相离    else{       //相交        t1 = (-f - sqrt(delta)) / (2 * e); sol.push_back(l.point(t1));        t2 = (-f + sqrt(delta)) / (2 * e); sol.push_back(l.point(t2));        return 2;    }}int GetCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol){      //求圆与圆的交点    double d = Length(C1.c - C2.c);    if(dcmp(d) == 0){        if(dcmp(C1.r - C2.r) == 0) return -1;       //两圆重合        return 0;       //同心圆但不重合    }    if(dcmp(C1.r + C2.r - d) < 0) return 0;     //外离    if(dcmp(fabs(C1.r - C2.r) - d) > 0) return 0;       //内含    double a = angle(C2.c - C1.c);    double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));    Point p1 = C1.point(a + da);    Point p2 = C1.point(a - da);    sol.push_back(p1);    if(p1 == p2) return 1;      //外切    sol.push_back(p2);    return 2;}Circle CircumscribedCircle(Point p1, Point p2, Point p3){       //求三角形的外心    double Bx = p2.x - p1.x, By = p2.y - p1.y;    double Cx = p3.x - p1.x, Cy = p3.y - p1.y;    double D = 2 * (Bx * Cy - By * Cx);    double cx = (Cy * (Bx * Bx + By * By) - By * (Cx * Cx + Cy * Cy)) / D + p1.x;    double cy = (Bx * (Cx * Cx + Cy * Cy) - Cx * (Bx * Bx + By * By)) / D + p1.y;    Point p(cx, cy);    return Circle(p, Length(p1-p));}Circle InscribedCircle(Point p1, Point p2, Point p3){       //求三角形的内切圆    double a = Length(p3 - p2);    double b = Length(p3 - p1);    double c = Length(p2 - p1);    Point p = (p1 * a + p2 * b + p3 * c) / (a + b + c);    return Circle(p, DistanceToLine(p, p2, p3));}int TangentLineThroughPoint(Point p, Circle C, Vector *v){      //求点到圆的直线    Vector u = C.c - p;    double dist = Length(u);    if(dcmp(dist - C.r) < 0) return 0;    else if(dcmp(dist - C.r) < eps){        v[0] = Rotate(u, pi / 2);        return 1;    }    else{        double ang = asin(C.r / dist);        v[0] = Rotate(u, ang);        v[1] = Rotate(u, -ang);        return 2;    }}void CircleThroughAPointAndTangentToALineWithRadius(Point p, Point p1, Point p2, double r){    Vector AB = p2 - p1;    Vector change1 = Rotate(AB, pi / 2) / Length(AB) * r;    Vector change2 = Rotate(AB, -pi / 2) / Length(AB) * r;    Line l1(p1 + change1, AB);    Line l2(p1 + change2, AB);    vector<Point> sol;    sol.clear();    double t1, t2;    int cnt1 = getLineCircleIntersection(l1, Circle(p, r), t1, t2, sol);    int cnt2 = getLineCircleIntersection(l2, Circle(p, r), t1, t2, sol);    int cnt = cnt1 + cnt2;    if(cnt) sort(sol.begin(), sol.end());    printf("[");    for(int i = 0; i < cnt; i++){        printf("(%.6f,%.6f)", sol[i].x, sol[i].y);        if(cnt == 2 && !i) printf(",");    }    puts("]");}void CircleTangentToTwoLinesWithRadius(Point A, Point B, Point C, Point D, double r){    Vector AB = B - A;    Vector change = Normal(AB) * r;    Point newA1 = A + change;    Point newA2 = A - change;    Vector CD = D - C;    Vector update = Normal(CD) * r;    Point newC1 = C + update;    Point newC2 = C - update;    Point p[5];    p[0] = GetLineIntersection(Line(newA1, AB), Line(newC1, CD));    p[1] = GetLineIntersection(Line(newA1, AB), Line(newC2, CD));    p[2] = GetLineIntersection(Line(newA2, AB), Line(newC1, CD));    p[3] = GetLineIntersection(Line(newA2, AB), Line(newC2, CD));    sort(p, p + 4);    printf("[");    printf("(%.6f,%.6f)", p[0].x, p[0].y);    for(int i = 1; i < 4; i++){        printf(",(%.6f,%.6f)", p[i].x, p[i].y);    }    puts("]");}void CircleTangentToTwoDisjointCirclesWithRadius(Circle C1, Circle C2, double r){    Vector CC = C2.c - C1.c;    double rdist = Length(CC);    if(dcmp(2 * r - rdist + C1.r + C2.r) < 0) puts("[]");    else if(dcmp(2 * r - rdist + C1.r + C2.r) == 0){        double ang = angle(CC);        Point A = C1.point(ang);        Point B = C2.point(ang + pi);        Point ret = (A + B) / 2;        printf("[(%.6f,%.6f)]\n", ret.x, ret.y);    }    else{        Circle A = Circle(C1.c, C1.r + r);        Circle B = Circle(C2.c, C2.r + r);        vector<Point> sol;        sol.clear();        GetCircleCircleIntersection(A, B, sol);        sort(sol.begin(), sol.end());        printf("[(%.6f,%.6f),(%.6f,%.6f)]\n", sol[0].x, sol[0].y, sol[1].x, sol[1].y);    }}int main(){    while(scanf("%s", type) == 1){        if(strcmp(type, "CircumscribedCircle") == 0){            Point p1, p2, p3;            p1.read();            p2.read();            p3.read();            Circle ret = CircumscribedCircle(p1, p2, p3);            printf("(%f,%f,%f)\n", ret.c.x, ret.c.y, ret.r);        }        else if(strcmp(type, "InscribedCircle") == 0){            Point p1, p2, p3;            p1.read();            p2.read();            p3.read();            Circle ret = InscribedCircle(p1, p2, p3);            printf("(%f,%f,%f)\n", ret.c.x, ret.c.y, ret.r);        }        else if(strcmp(type, "TangentLineThroughPoint") == 0){            Circle C;            Point p;            C.read();            p.read();            Vector v[3];            int cnt = TangentLineThroughPoint(p, C, v);            double ret[3];            for(int i = 0; i < cnt; i++){                ret[i] = angle(v[i]);                if(dcmp(ret[i] - pi) == 0) ret[i] = 0;                if(dcmp(ret[i]) < 0) ret[i] += pi;            }            sort(ret, ret + cnt);            printf("[");            for(int i = 0; i < cnt; i++){                printf("%.6f", ret[i] / pi * 180);                if(cnt == 2 && !i) printf(",");            }            puts("]");        }        else if(strcmp(type, "CircleThroughAPointAndTangentToALineWithRadius") == 0){            Point p, p1, p2;            double r;            p.read();            p1.read();            p2.read();            scanf("%lf", &r);            CircleThroughAPointAndTangentToALineWithRadius(p, p1, p2, r);        }        else if(strcmp(type, "CircleTangentToTwoLinesWithRadius") == 0){            Point A, B, C, D;            double r;            A.read();            B.read();            C.read();            D.read();            scanf("%lf", &r);            CircleTangentToTwoLinesWithRadius(A, B, C, D, r);        }        else{            Circle C1, C2;            double r;            C1.read();            C2.read();            scanf("%lf", &r);            CircleTangentToTwoDisjointCirclesWithRadius(C1, C2, r);        }    }    return 0;}


热点排行