首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 开发语言 > 编程 >

POJ1061 田鸡的约会

2013-09-25 
POJ1061 青蛙的约会Description两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴

POJ1061 青蛙的约会

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4


解同余方程

(n-m) = (x-y) (mod L)  


code:

#include <stdio.h>typedef long long LL;void exgcd(LL a, LL b, LL& d, LL& x, LL& y){    if(!b) {        d=a;        x=1;        y=0;    } else {        exgcd(b,a%b,d,y,x);        y-=x*(a/b);    }}int main(){    LL x, y, m, n, L;    while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&L)) {        LL d, X, Y;        exgcd(n-m, L, d, X, Y);        int b = L/d;        int n = (x-y)/d;        if((x-y)%d) {            printf("Impossible\n");            continue;        }        X = X*n;        X =(X%b + b) % b;        printf("%lld\n",X);    }    return 0;}



热点排行