首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 数据库 > 其他数据库 >

2013长沙市网络赛 G Goldbach (FFT)

2013-09-24 
2013长沙网络赛 G Goldbach (FFT)转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmodecontents

2013长沙网络赛 G Goldbach (FFT)

转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove

太逗了。。。比赛的时候,误以为素数会很多。。。。

然后 就想歪 了,开始搞FFT。

其实发现主要 是a + b + c的情况不好处理。

先将a + b的情况FFT一下,然后 再 + c FFT一次。

num[i]表示a + b = i的个数, sum[i] 表示 a + b + c = i的个数。

但是去重比较麻烦,如果 a + a = i的情况最好单独考虑,从num[i]中去掉,查询的时候单独统计。

这样的话和c合并,可能出现a + b + a的情况,这种情况也需要在查询的时候单调搞一下,最后再去掉排列组合的情况。


赛后发现只有8000个素数,所有情况平方都可以预处理

#include <iostream>#include <cstdio>#include <cstring>#include <cmath>#include <algorithm>#include <set>#include <map>#include <vector>#include <queue>#include <stack>#define lson step << 1#define rson step << 1 | 1#define lowbit(x) (x & (-x))#define Key_value ch[ch[root][1]][0] using namespace std;typedef long long LL;const int N = 80005;const LL MOD = 1000000007;int prime[N] , flag[N] , cnt = 0;void init () {    flag[0] = flag[1] = 1;    for (int i = 2 ; i < N ; i ++) {        if (flag[i]) continue;        prime[cnt ++] = i;        for (int j = 2 ; j * i < N ; j ++)            flag[i * j] = 1;    }}//FFT copy from kuangbin    const double pi = acos (-1.0);    // Complex  z = a + b * i      struct Complex {        double a, b;        Complex(double _a=0.0,double _b=0.0):a(_a),b(_b){}        Complex operator + (const Complex &c) const {            return Complex(a + c.a , b + c.b);        }        Complex operator - (const Complex &c) const {            return Complex(a - c.a , b - c.b);        }        Complex operator * (const Complex &c) const {            return Complex(a * c.a - b * c.b , a * c.b + b * c.a);        }    };    //len = 2 ^ k    void change (Complex y[] , int len) {        for (int i = 1 , j = len / 2 ; i < len -1 ; i ++) {            if (i < j) swap(y[i] , y[j]);            int k = len / 2;            while (j >= k) {                j -= k;                k /= 2;            }            if(j < k) j += k;        }     }    // FFT     // len = 2 ^ k    // on = 1  DFT    on = -1 IDFT    void FFT (Complex y[], int len , int on) {        change (y , len);        for (int h = 2 ; h <= len ; h <<= 1) {            Complex wn(cos (-on * 2 * pi / h), sin (-on * 2 * pi / h));            for (int j = 0 ; j < len ; j += h) {                Complex w(1 , 0);                for (int k = j ; k < j + h / 2 ; k ++) {                    Complex u = y[k];                    Complex t = w * y [k + h / 2];                    y[k] = u + t;                    y[k + h / 2] = u - t;                    w = w * wn;                }            }        }        if (on == -1) {            for (int i = 0 ; i < len ; i ++) {                y[i].a /= len;            }        }    }  LL sum[N << 2] , num[N << 2];  Complex x1[N << 2] , x2[N << 2];    int main (){    int n = 80000;    init ();    int len = n;    int l = 1;    while (l < len * 2) l <<= 1;      for (int i = 0 ; i <= n ; i ++) {          if (flag[i] == 0)  x1[i] = Complex (1 , 0);        else  x1[i] = Complex (0 , 0);    }      for (int i = n + 1 ; i < l ; i ++)        x1[i] = Complex (0 , 0);    FFT(x1 , l , 1);      for (int i = 0 ; i < l ; i ++) {          x1[i] = x1[i] * x1[i];      }      FFT(x1 , l , -1);     for (int i = 0 ; i <= n ; i ++) {          num[i] = (LL)(x1[i].a + 0.5);     }     for (int i = 0 ; i <= n ; i ++) {        if (flag[i] == 0)             num[i * 2] --;    }     for (int i = 0 ; i <= n ; i ++) {        num[i] /= 2;    }        for (int i = 0 ; i <= n ; i ++) {          if (flag[i] == 0)  x1[i] = Complex (1 , 0);        else  x1[i] = Complex (0 , 0);    }      for (int i = n + 1 ; i < l ; i ++)        x1[i] = Complex (0 , 0);    for (int i = 0 ; i <= n ; i ++) {        x2[i] = Complex (num[i] , 0);    }      for (int i = n + 1 ; i < l ; i ++)        x2[i] = Complex (0 , 0);    FFT(x1 , l , 1);      FFT(x2 , l , 1);    for (int i = 0 ; i < l ; i ++) {          x1[i] = x1[i] * x2[i];      }      FFT(x1 , l , -1);      for (int i = 0 ; i <= n ; i ++) {          sum[i] = (LL)(x1[i].a + 0.5);     }    while (scanf ("%d" , &n) != EOF) {            LL ans = flag[n] == 0 ? 1 : 0;    // a        for (int i = 0 ; i < cnt && prime[i] * prime[i] <= n ; i ++) {   // a * b            if (n % prime[i]) continue;            if (flag[n / prime[i]] == 0) {                ans ++;            }        }        for (int i = 0 ; i < cnt && prime[i] <= n ; i ++) {            for (int j = i ; j < cnt && 1LL * prime[i] * prime[j] <= n ; j ++) {                if (flag[n - prime[i] * prime[j]] == 0) {                    ans ++;  // a * b + c                }            }        }        for (int i = 0 ; i < cnt && prime[i] <= n ; i ++) {            for (int j = i ; j < cnt && 1LL * prime[i] * prime[j] <= n ; j ++) {                for (int k = j ; k < cnt && 1LL * prime[i] * prime[j] * prime[k] <= n ; k ++) {                    if (prime[i] * prime[j] * prime[k] == n)                        ans ++;   // a * b * c                }            }        }        int tot ;        if (n % 2 == 0 && flag[n / 2] == 0) tot = 1;        else tot = 0;        ans = (ans + (LL)num[n] + tot) % MOD;   // a + b        tot = 0;        for (int i = 0 ; i < cnt ; i ++) {            if (n - prime[i] * 2 <= 0) break;            if (flag[n - prime[i] * 2] == 0) tot ++;        }        ans = (ans + (sum[n] + 2 * tot) / 3) % MOD;   // a + b + c        if (n % 3 == 0 && flag[n / 3] == 0) ans ++;        printf ("%lld\n" , ans);    }    return 0;}       


1楼pkqs90昨天 23:43
。。同误以为素数很多然后怒写FFT的默默点赞。。
Re: ACM_cxlove2小时前
回复pkqs90n好顶赞。。

热点排行