首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 开发语言 > 编程 >

Prim算法跟Kruskal算法

2012-12-25 
Prim算法和Kruskal算法? ? Prim算法和Kruskal算法都能从连通图找出最小生成树。区别在于Prim算法是挨个找,

Prim算法和Kruskal算法

? ? Prim算法和Kruskal算法都能从连通图找出最小生成树。区别在于Prim算法是挨个找,而Kruskal是先排序再找。

?

? ? 一、Prim算法:

? ? Prim算法实现的是找出一个有权重连通图中的最小生成树,即:具有最小权重且连接到所有结点的树。(强调的是树,树是没有回路的)。

? ? Prim算法是这样来做的:?

? ? 首先以一个结点作为最小生成树的初始结点,然后以迭代的方式找出与最小生成树中各结点权重最小边,并加入到最小生成树中。加入之后如果产生回路则跳过这条边,选择下一个结点。当所有结点都加入到最小生成树中之后,就找出了连通图中的最小生成树了。

?

? ? Prim算法最小生成树查找过程:

?


Prim算法跟Kruskal算法

?

C语言实现:

?

#include <stdio.h>  #include <stdlib.h>  #define maxint 1073741824  int main()  {  FILE *input=fopen("input.txt","r"),*out=fopen("output.txt","w");  int n,m,i,j,x,y,w;  fscanf(input,"%d %d",&n,&m);  int map[n][n],E[m][3],tree[m],Mst[n][n];  /*Mst表示最小生成树的邻接矩阵,map是原图,E是边集,其中E[0]和E[1]是边的两个顶点,E[2]是边的权值,tree是用于判断原图的点是否在最小生成树中*/  memset(tree,0,sizeof(tree));  for(i=0; i<n; i++)  {  for(j=0; j<n; j++)  {  map[i][j]=maxint;  Mst[i][j]=maxint;  }  E[i][0]=E[i][1]=maxint;  }  for(i=0; i<m; i++)  {  fscanf(input,"%d %d %d",&x,&y,&w);  if(w<map[x][y])  {  map[x][y]=w;  map[y][x]=w;  }  }  int min=maxint,next=0,now=0,k=0;  tree[0]=1;  for(i=0; i<n; i++)  {  for(j=0; j<n; j++)  {  if(map[now][j]!=maxint && tree[j]==0)  {  E[k][0]=now;  E[k][2]=map[now][j];  E[k++][1]=j;  }  }  for(j=0; j<k; j++)  {  if(E[j][2]<min && tree[E[j][1]]==0)  {  min=E[j][2];  x=E[j][0];  y=E[j][1];  next=y;  }  }  tree[next]=1;  now=next;  Mst[x][y]=map[x][y];  Mst[y][x]=map[y][x];  min=maxint;  }  for(i=0; i<n; i++)  {  for(j=0; j<n; j++)  {  if(Mst[i][j]==maxint) //判断两点是否连通  fprintf(out,"00 "); //美化输出,不必多加探究  else  {  fprintf(out,"%d ",Mst[i][j]); //输出生成树的邻接矩阵,要输出树的自己可以根据邻接矩阵的数据进行加工  }  }  fprintf(out,"\n");  }  fclose(input);  fclose(out);  return 0;  } // 程序未考虑不是连通图的情况,修改很简单,判断生成树的节点数量是否等于原图的节点数量  //如果小于(不会有大于)则本图不是连通图  //其实prim和迪杰斯特拉算法核心有相似之处
?

?

? ? 二、Kruskal算法:

? ? Kruskal算法与Prim算法的不同之处在于,Kruskal在找最小生成树结点之前,需要对所有权重边做从小到大排序。将排序好的权重边依次加入到最小生成树中,如果加入时产生回路就跳过这条边,加入下一条边。当所有结点都加入到最小生成树中之后,就找出了最小生成树。

?

C语言实现:

?

/* Kruskal.c  Copyright (c) 2002, 2006 by ctu_85  All Rights Reserved.  */  /* I am sorry to say that the situation of unconnected graph is not concerned */  #include "stdio.h"  #define maxver 10  #define maxright 100  int G[maxver][maxver],record=0,touched[maxver][maxver];  int circle=0;  int FindCircle(int,int,int,int);  int main()  {  int path[maxver][2],used[maxver][maxver];  int i,j,k,t,min=maxright,exsit=0;  int v1,v2,num,temp,status=0;  restart:  printf("Please enter the number of vertex(s) in the graph:\n");  scanf("%d",&num);  if(num>maxver||num<0)  {  printf("Error!Please reinput!\n");  goto restart;  }  for(j=0;j<num;j++)  for(k=0;k<num;k++)  {  if(j==k)  {  G[j][k]=maxright;  used[j][k]=1;  touched[j][k]=0;  }  else  if(j<k)  {  re:  printf("Please input the right between vertex %d and vertex %d,if no edge exists please input -1:\n",j+1,k+1);  scanf("%d",&temp);  if(temp>=maxright||temp<-1)  {  printf("Invalid input!\n");  goto re;  }  if(temp==-1)  temp=maxright;  G[j][k]=G[k][j]=temp;  used[j][k]=used[k][j]=0;  touched[j][k]=touched[k][j]=0;  }  }  for(j=0;j<num;j++)  {  path[j][0]=0;  path[j][1]=0;  }  for(j=0;j<num;j++)  {  status=0;  for(k=0;k<num;k++)  if(G[j][k]<maxright)  {  status=1;  break;  }  if(status==0)  break;  }  for(i=0;i<num-1&&status;i++)  {  for(j=0;j<num;j++)  for(k=0;k<num;k++)  if(G[j][k]<min&&!used[j][k])  {  v1=j;  v2=k;  min=G[j][k];  }  if(!used[v1][v2])  {  used[v1][v2]=1;  used[v2][v1]=1;  touched[v1][v2]=1;  touched[v2][v1]=1;  path[0]=v1;  path[1]=v2;  for(t=0;t<record;t++)  FindCircle(path[t][0],path[t][0],num,path[t][0]);  if(circle)  {/*if a circle exsits,roll back*/  circle=0;  i--;  exsit=0;  touched[v1][v2]=0;  touched[v2][v1]=0;  min=maxright;  }  else  {  record++;  min=maxright;  }  }  }  if(!status)  printf("We cannot deal with it because the graph is not connected!\n");  else  {  for(i=0;i<num-1;i++)  printf("Path %d:vertex %d to vertex %d\n",i+1,path[0]+1,path[1]+1);  }  return 1;  }  int FindCircle(int start,int begin,int times,int pre)  { /* to judge whether a circle is produced*/  int i;  for(i=0;i<times;i++)  if(touched[begin]==1)  {  if(i==start&&pre!=start)  {  circle=1;  return 1;  break;  }  else  if(pre!=i)  FindCircle(start,i,times,begin);  else  continue;  }  return 1;  }
?

?无疑,Kruskal算法在效率上要比Prim算法快,因为Kruskal只需要对权重边做一次排序,而Prim算法则需要做多次排序。尽管Prim算法每次做的算法涉及的权重边不一定会涵盖连通图中的所有边,但是随着所使用的排序算法的效率的提高,Kruskal算法和Prim算法之间的差异将会清晰的显性出来。

热点排行