欧拉计划:相似的18题和67题,以及简单的20题100!
题目里面说Problem18 和 67是一个类型的题目,那我们就把这两个题目放在一起来看一下:
首先18题:By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.从下面的三角形的顶端开始,向下面一行的相邻数字移动,从顶端到底端的最大总和为23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.也就是 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)这里说的是不能暴力解题啊,后面还有67题等着你了
这道题目的思路是看到china linux论坛里得到,也是一种借鉴。只不过我没有用那个模块。我把参考的思路放在这里:
(n1)
...
3
2
1
例如, 10! = 10
9
...
3
2
1 = 3628800,
那么10!的各位之和就是3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.算出100!的各位之和。
很简答的题目,直接上程序:
C:\Windows\system32\cmd.exe /c perl "C:\Users\Administrator\Desktop\新建文本文档.pl"93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000648Hit any key to close this window...