首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 开发语言 > 编程 >

平衡2分堆的使用及优先级队列的实现

2012-09-09 
平衡二分堆的使用及优先级队列的实现Priority queues are a kind of queue in which the elements are deq

平衡二分堆的使用及优先级队列的实现

Priority queues are a kind of queue in which the elements are dequeued in priority order.

They are a mutable data abstraction: enqueues and dequeues are destructive. Each element has a priority, an element of a totally ordered set (usually a number) More important things come out first, even if they were added later Our convention: smaller number = higher priority There is no (fast) operation to find out whether an arbitrary element is in the queue Useful for event-based simulators (with priority = simulated time), real-time games, searching, routing, compression via Huffman coding
(Turn?on?JavaScript?to?see?code?examples)

There are many ways to implement this signature. For example, we could implement it as a linked list, with Repeat #2 as necessary.
?

Example: inserting 4 into previous tree.

/* * @(#)PriorityQueue.java1.16 06/04/21 * * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */package java.util;/** * An unbounded priority {@linkplain Queue queue} based on a priority heap. * The elements of the priority queue are ordered according to their * {@linkplain Comparable natural ordering}, or by a {@link Comparator} * provided at queue construction time, depending on which constructor is * used.  A priority queue does not permit {@code null} elements. * A priority queue relying on natural ordering also does not permit * insertion of non-comparable objects (doing so may result in * {@code ClassCastException}). * * <p>The <em>head</em> of this queue is the <em>least</em> element * with respect to the specified ordering.  If multiple elements are * tied for least value, the head is one of those elements -- ties are * broken arbitrarily.  The queue retrieval operations {@code poll}, * {@code remove}, {@code peek}, and {@code element} access the * element at the head of the queue. * * <p>A priority queue is unbounded, but has an internal * <i>capacity</i> governing the size of an array used to store the * elements on the queue.  It is always at least as large as the queue * size.  As elements are added to a priority queue, its capacity * grows automatically.  The details of the growth policy are not * specified. * * <p>This class and its iterator implement all of the * <em>optional</em> methods of the {@link Collection} and {@link * Iterator} interfaces.  The Iterator provided in method {@link * #iterator()} is <em>not</em> guaranteed to traverse the elements of * the priority queue in any particular order. If you need ordered * traversal, consider using {@code Arrays.sort(pq.toArray())}. * * <p> <strong>Note that this implementation is not synchronized.</strong> * Multiple threads should not access a {@code PriorityQueue} * instance concurrently if any of the threads modifies the queue. * Instead, use the thread-safe {@link * java.util.concurrent.PriorityBlockingQueue} class. * * <p>Implementation note: this implementation provides * O(log(n)) time for the enqueing and dequeing methods * ({@code offer}, {@code poll}, {@code remove()} and {@code add}); * linear time for the {@code remove(Object)} and {@code contains(Object)} * methods; and constant time for the retrieval methods * ({@code peek}, {@code element}, and {@code size}). * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @since 1.5 * @version 1.16, 04/21/06 * @author Josh Bloch, Doug Lea * @param <E> the type of elements held in this collection */public class PriorityQueue<E> extends AbstractQueue<E>    implements java.io.Serializable {    private static final long serialVersionUID = -7720805057305804111L;    private static final int DEFAULT_INITIAL_CAPACITY = 11;    /**     * Priority queue represented as a balanced binary heap: the two     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The     * priority queue is ordered by comparator, or by the elements'     * natural ordering, if comparator is null: For each node n in the     * heap and each descendant d of n, n <= d.  The element with the     * lowest value is in queue[0], assuming the queue is nonempty.     */    private transient Object[] queue;    /**     * The number of elements in the priority queue.     */    private int size = 0;    /**     * The comparator, or null if priority queue uses elements'     * natural ordering.     */    private final Comparator<? super E> comparator;    /**     * The number of times this priority queue has been     * <i>structurally modified</i>.  See AbstractList for gory details.     */    private transient int modCount = 0;    /**     * Creates a {@code PriorityQueue} with the default initial     * capacity (11) that orders its elements according to their     * {@linkplain Comparable natural ordering}.     */    public PriorityQueue() {        this(DEFAULT_INITIAL_CAPACITY, null);    }    /**     * Creates a {@code PriorityQueue} with the specified initial     * capacity that orders its elements according to their     * {@linkplain Comparable natural ordering}.     *     * @param initialCapacity the initial capacity for this priority queue     * @throws IllegalArgumentException if {@code initialCapacity} is less     *         than 1     */    public PriorityQueue(int initialCapacity) {        this(initialCapacity, null);    }    /**     * Creates a {@code PriorityQueue} with the specified initial capacity     * that orders its elements according to the specified comparator.     *     * @param  initialCapacity the initial capacity for this priority queue     * @param  comparator the comparator that will be used to order this     *         priority queue.  If {@code null}, the {@linkplain Comparable     *         natural ordering} of the elements will be used.     * @throws IllegalArgumentException if {@code initialCapacity} is     *         less than 1     */    public PriorityQueue(int initialCapacity,                         Comparator<? super E> comparator) {        // Note: This restriction of at least one is not actually needed,        // but continues for 1.5 compatibility        if (initialCapacity < 1)            throw new IllegalArgumentException();        this.queue = new Object[initialCapacity];        this.comparator = comparator;    }    /**     * Creates a {@code PriorityQueue} containing the elements in the     * specified collection.  If the specified collection is an instance of     * a {@link SortedSet} or is another {@code PriorityQueue}, this     * priority queue will be ordered according to the same ordering.     * Otherwise, this priority queue will be ordered according to the     * {@linkplain Comparable natural ordering} of its elements.     *     * @param  c the collection whose elements are to be placed     *         into this priority queue     * @throws ClassCastException if elements of the specified collection     *         cannot be compared to one another according to the priority     *         queue's ordering     * @throws NullPointerException if the specified collection or any     *         of its elements are null     */    public PriorityQueue(Collection<? extends E> c) {        initFromCollection(c);        if (c instanceof SortedSet)            comparator = (Comparator<? super E>)                ((SortedSet<? extends E>)c).comparator();        else if (c instanceof PriorityQueue)            comparator = (Comparator<? super E>)                ((PriorityQueue<? extends E>)c).comparator();        else {            comparator = null;            heapify();        }    }    /**     * Creates a {@code PriorityQueue} containing the elements in the     * specified priority queue.  This priority queue will be     * ordered according to the same ordering as the given priority     * queue.     *     * @param  c the priority queue whose elements are to be placed     *         into this priority queue     * @throws ClassCastException if elements of {@code c} cannot be     *         compared to one another according to {@code c}'s     *         ordering     * @throws NullPointerException if the specified priority queue or any     *         of its elements are null     */    public PriorityQueue(PriorityQueue<? extends E> c) {        comparator = (Comparator<? super E>)c.comparator();        initFromCollection(c);    }    /**     * Creates a {@code PriorityQueue} containing the elements in the     * specified sorted set.   This priority queue will be ordered     * according to the same ordering as the given sorted set.     *     * @param  c the sorted set whose elements are to be placed     *         into this priority queue     * @throws ClassCastException if elements of the specified sorted     *         set cannot be compared to one another according to the     *         sorted set's ordering     * @throws NullPointerException if the specified sorted set or any     *         of its elements are null     */    public PriorityQueue(SortedSet<? extends E> c) {        comparator = (Comparator<? super E>)c.comparator();        initFromCollection(c);    }    /**     * Initializes queue array with elements from the given Collection.     *     * @param c the collection     */    private void initFromCollection(Collection<? extends E> c) {        Object[] a = c.toArray();        // If c.toArray incorrectly doesn't return Object[], copy it.        if (a.getClass() != Object[].class)            a = Arrays.copyOf(a, a.length, Object[].class);        queue = a;        size = a.length;    }    /**     * Increases the capacity of the array.     *     * @param minCapacity the desired minimum capacity     */    private void grow(int minCapacity) {        if (minCapacity < 0) // overflow            throw new OutOfMemoryError();int oldCapacity = queue.length;        // Double size if small; else grow by 50%        int newCapacity = ((oldCapacity < 64)?                           ((oldCapacity + 1) * 2):                           ((oldCapacity / 2) * 3));        if (newCapacity < 0) // overflow            newCapacity = Integer.MAX_VALUE;        if (newCapacity < minCapacity)            newCapacity = minCapacity;        queue = Arrays.copyOf(queue, newCapacity);    }    /**     * Inserts the specified element into this priority queue.     *     * @return {@code true} (as specified by {@link Collection#add})     * @throws ClassCastException if the specified element cannot be     *         compared with elements currently in this priority queue     *         according to the priority queue's ordering     * @throws NullPointerException if the specified element is null     */    public boolean add(E e) {        return offer(e);    }    /**     * Inserts the specified element into this priority queue.     *     * @return {@code true} (as specified by {@link Queue#offer})     * @throws ClassCastException if the specified element cannot be     *         compared with elements currently in this priority queue     *         according to the priority queue's ordering     * @throws NullPointerException if the specified element is null     */    public boolean offer(E e) {        if (e == null)            throw new NullPointerException();        modCount++;        int i = size;        if (i >= queue.length)            grow(i + 1);        size = i + 1;        if (i == 0)            queue[0] = e;        else            siftUp(i, e);        return true;    }    public E peek() {        if (size == 0)            return null;        return (E) queue[0];    }    private int indexOf(Object o) {if (o != null) {            for (int i = 0; i < size; i++)                if (o.equals(queue[i]))                    return i;        }        return -1;    }    /**     * Removes a single instance of the specified element from this queue,     * if it is present.  More formally, removes an element {@code e} such     * that {@code o.equals(e)}, if this queue contains one or more such     * elements.  Returns {@code true} if and only if this queue contained     * the specified element (or equivalently, if this queue changed as a     * result of the call).     *     * @param o element to be removed from this queue, if present     * @return {@code true} if this queue changed as a result of the call     */    public boolean remove(Object o) {int i = indexOf(o);if (i == -1)    return false;else {    removeAt(i);    return true;}    }    /**     * Version of remove using reference equality, not equals.     * Needed by iterator.remove.     *     * @param o element to be removed from this queue, if present     * @return {@code true} if removed     */    boolean removeEq(Object o) {for (int i = 0; i < size; i++) {    if (o == queue[i]) {                removeAt(i);                return true;            }        }        return false;    }    /**     * Returns {@code true} if this queue contains the specified element.     * More formally, returns {@code true} if and only if this queue contains     * at least one element {@code e} such that {@code o.equals(e)}.     *     * @param o object to be checked for containment in this queue     * @return {@code true} if this queue contains the specified element     */    public boolean contains(Object o) {return indexOf(o) != -1;    }    /**     * Returns an array containing all of the elements in this queue.     * The elements are in no particular order.     *     * <p>The returned array will be "safe" in that no references to it are     * maintained by this queue.  (In other words, this method must allocate     * a new array).  The caller is thus free to modify the returned array.     *     * <p>This method acts as bridge between array-based and collection-based     * APIs.     *     * @return an array containing all of the elements in this queue     */    public Object[] toArray() {        return Arrays.copyOf(queue, size);    }    /**     * Returns an array containing all of the elements in this queue; the     * runtime type of the returned array is that of the specified array.     * The returned array elements are in no particular order.     * If the queue fits in the specified array, it is returned therein.     * Otherwise, a new array is allocated with the runtime type of the     * specified array and the size of this queue.     *     * <p>If the queue fits in the specified array with room to spare     * (i.e., the array has more elements than the queue), the element in     * the array immediately following the end of the collection is set to     * {@code null}.     *     * <p>Like the {@link #toArray()} method, this method acts as bridge between     * array-based and collection-based APIs.  Further, this method allows     * precise control over the runtime type of the output array, and may,     * under certain circumstances, be used to save allocation costs.     *     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.     * The following code can be used to dump the queue into a newly     * allocated array of <tt>String</tt>:     *     * <pre>     *     String[] y = x.toArray(new String[0]);</pre>     *     * Note that <tt>toArray(new Object[0])</tt> is identical in function to     * <tt>toArray()</tt>.     *     * @param a the array into which the elements of the queue are to     *          be stored, if it is big enough; otherwise, a new array of the     *          same runtime type is allocated for this purpose.     * @return an array containing all of the elements in this queue     * @throws ArrayStoreException if the runtime type of the specified array     *         is not a supertype of the runtime type of every element in     *         this queue     * @throws NullPointerException if the specified array is null     */    public <T> T[] toArray(T[] a) {        if (a.length < size)            // Make a new array of a's runtime type, but my contents:            return (T[]) Arrays.copyOf(queue, size, a.getClass());System.arraycopy(queue, 0, a, 0, size);        if (a.length > size)            a[size] = null;        return a;    }    /**     * Returns an iterator over the elements in this queue. The iterator     * does not return the elements in any particular order.     *     * @return an iterator over the elements in this queue     */    public Iterator<E> iterator() {        return new Itr();    }    private final class Itr implements Iterator<E> {        /**         * Index (into queue array) of element to be returned by         * subsequent call to next.         */        private int cursor = 0;        /**         * Index of element returned by most recent call to next,         * unless that element came from the forgetMeNot list.         * Set to -1 if element is deleted by a call to remove.         */        private int lastRet = -1;        /**         * A queue of elements that were moved from the unvisited portion of         * the heap into the visited portion as a result of "unlucky" element         * removals during the iteration.  (Unlucky element removals are those         * that require a siftup instead of a siftdown.)  We must visit all of         * the elements in this list to complete the iteration.  We do this         * after we've completed the "normal" iteration.         *         * We expect that most iterations, even those involving removals,         * will not need to store elements in this field.         */        private ArrayDeque<E> forgetMeNot = null;        /**         * Element returned by the most recent call to next iff that         * element was drawn from the forgetMeNot list.         */        private E lastRetElt = null;        /**         * The modCount value that the iterator believes that the backing         * Queue should have.  If this expectation is violated, the iterator         * has detected concurrent modification.         */        private int expectedModCount = modCount;        public boolean hasNext() {            return cursor < size ||                (forgetMeNot != null && !forgetMeNot.isEmpty());        }        public E next() {            if (expectedModCount != modCount)                throw new ConcurrentModificationException();            if (cursor < size)                return (E) queue[lastRet = cursor++];            if (forgetMeNot != null) {                lastRet = -1;                lastRetElt = forgetMeNot.poll();                if (lastRetElt != null)                    return lastRetElt;            }            throw new NoSuchElementException();        }        public void remove() {            if (expectedModCount != modCount)                throw new ConcurrentModificationException();            if (lastRet != -1) {                E moved = PriorityQueue.this.removeAt(lastRet);                lastRet = -1;                if (moved == null)                    cursor--;                else {                    if (forgetMeNot == null)                        forgetMeNot = new ArrayDeque<E>();                    forgetMeNot.add(moved);                }            } else if (lastRetElt != null) {                PriorityQueue.this.removeEq(lastRetElt);                lastRetElt = null;            } else {                throw new IllegalStateException();    }            expectedModCount = modCount;        }    }    public int size() {        return size;    }    /**     * Removes all of the elements from this priority queue.     * The queue will be empty after this call returns.     */    public void clear() {        modCount++;        for (int i = 0; i < size; i++)            queue[i] = null;        size = 0;    }    public E poll() {        if (size == 0)            return null;        int s = --size;        modCount++;        E result = (E) queue[0];        E x = (E) queue[s];        queue[s] = null;        if (s != 0)            siftDown(0, x);        return result;    }    /**     * Removes the ith element from queue.     *     * Normally this method leaves the elements at up to i-1,     * inclusive, untouched.  Under these circumstances, it returns     * null.  Occasionally, in order to maintain the heap invariant,     * it must swap a later element of the list with one earlier than     * i.  Under these circumstances, this method returns the element     * that was previously at the end of the list and is now at some     * position before i. This fact is used by iterator.remove so as to     * avoid missing traversing elements.     */    private E removeAt(int i) {        assert i >= 0 && i < size;        modCount++;        int s = --size;        if (s == i) // removed last element            queue[i] = null;        else {            E moved = (E) queue[s];            queue[s] = null;            siftDown(i, moved);            if (queue[i] == moved) {                siftUp(i, moved);                if (queue[i] != moved)                    return moved;            }        }        return null;    }    /**     * Inserts item x at position k, maintaining heap invariant by     * promoting x up the tree until it is greater than or equal to     * its parent, or is the root.     *     * To simplify and speed up coercions and comparisons. the     * Comparable and Comparator versions are separated into different     * methods that are otherwise identical. (Similarly for siftDown.)     *     * @param k the position to fill     * @param x the item to insert     */    private void siftUp(int k, E x) {        if (comparator != null)            siftUpUsingComparator(k, x);        else            siftUpComparable(k, x);    }    private void siftUpComparable(int k, E x) {        Comparable<? super E> key = (Comparable<? super E>) x;        while (k > 0) {            int parent = (k - 1) >>> 1;            Object e = queue[parent];            if (key.compareTo((E) e) >= 0)                break;            queue[k] = e;            k = parent;        }        queue[k] = key;    }    private void siftUpUsingComparator(int k, E x) {        while (k > 0) {            int parent = (k - 1) >>> 1;            Object e = queue[parent];            if (comparator.compare(x, (E) e) >= 0)                break;            queue[k] = e;            k = parent;        }        queue[k] = x;    }    /**     * Inserts item x at position k, maintaining heap invariant by     * demoting x down the tree repeatedly until it is less than or     * equal to its children or is a leaf.     *     * @param k the position to fill     * @param x the item to insert     */    private void siftDown(int k, E x) {        if (comparator != null)            siftDownUsingComparator(k, x);        else            siftDownComparable(k, x);    }    private void siftDownComparable(int k, E x) {        Comparable<? super E> key = (Comparable<? super E>)x;        int half = size >>> 1;        // loop while a non-leaf        while (k < half) {            int child = (k << 1) + 1; // assume left child is least            Object c = queue[child];            int right = child + 1;            if (right < size &&                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)                c = queue[child = right];            if (key.compareTo((E) c) <= 0)                break;            queue[k] = c;            k = child;        }        queue[k] = key;    }    private void siftDownUsingComparator(int k, E x) {        int half = size >>> 1;        while (k < half) {            int child = (k << 1) + 1;            Object c = queue[child];            int right = child + 1;            if (right < size &&                comparator.compare((E) c, (E) queue[right]) > 0)                c = queue[child = right];            if (comparator.compare(x, (E) c) <= 0)                break;            queue[k] = c;            k = child;        }        queue[k] = x;    }    /**     * Establishes the heap invariant (described above) in the entire tree,     * assuming nothing about the order of the elements prior to the call.     */    private void heapify() {        for (int i = (size >>> 1) - 1; i >= 0; i--)            siftDown(i, (E) queue[i]);    }    /**     * Returns the comparator used to order the elements in this     * queue, or {@code null} if this queue is sorted according to     * the {@linkplain Comparable natural ordering} of its elements.     *     * @return the comparator used to order this queue, or     *         {@code null} if this queue is sorted according to the     *         natural ordering of its elements     */    public Comparator<? super E> comparator() {        return comparator;    }    /**     * Saves the state of the instance to a stream (that     * is, serializes it).     *     * @serialData The length of the array backing the instance is     *             emitted (int), followed by all of its elements     *             (each an {@code Object}) in the proper order.     * @param s the stream     */    private void writeObject(java.io.ObjectOutputStream s)        throws java.io.IOException{        // Write out element count, and any hidden stuff        s.defaultWriteObject();        // Write out array length, for compatibility with 1.5 version        s.writeInt(Math.max(2, size + 1));        // Write out all elements in the "proper order".        for (int i = 0; i < size; i++)            s.writeObject(queue[i]);    }    /**     * Reconstitutes the {@code PriorityQueue} instance from a stream     * (that is, deserializes it).     *     * @param s the stream     */    private void readObject(java.io.ObjectInputStream s)        throws java.io.IOException, ClassNotFoundException {        // Read in size, and any hidden stuff        s.defaultReadObject();        // Read in (and discard) array length        s.readInt();queue = new Object[size];        // Read in all elements.        for (int i = 0; i < size; i++)            queue[i] = s.readObject();// Elements are guaranteed to be in "proper order", but the// spec has never explained what that might be.heapify();    }}

?

?

// BinaryHeap class//// CONSTRUCTION: empty or with initial array.//// ******************PUBLIC OPERATIONS*********************// void insert( x )       --> Insert x// Comparable deleteMin( )--> Return and remove smallest item// Comparable findMin( )  --> Return smallest item// boolean isEmpty( )     --> Return true if empty; else false// void makeEmpty( )      --> Remove all items// ******************ERRORS********************************// Throws UnderflowException for findMin and deleteMin when empty/** * Implements a binary heap. * Note that all "matching" is based on the compareTo method. * @author Mark Allen Weiss */public class BinaryHeap implements PriorityQueue {    /**     * Construct the binary heap.     */    public BinaryHeap( ) {        currentSize = 0;        array = new Comparable[ DEFAULT_CAPACITY + 1 ];    }        /**     * Construct the binary heap from an array.     * @param items the inital items in the binary heap.     */    public BinaryHeap( Comparable [ ] items ) {        currentSize = items.length;        array = new Comparable[ items.length + 1 ];                for( int i = 0; i < items.length; i++ )            array[ i + 1 ] = items[ i ];        buildHeap( );    }        /**     * Insert into the priority queue.     * Duplicates are allowed.     * @param x the item to insert.     * @return null, signifying that decreaseKey cannot be used.     */    public PriorityQueue.Position insert( Comparable x ) {        if( currentSize + 1 == array.length )            doubleArray( );                // Percolate up        int hole = ++currentSize;        array[ 0 ] = x;                for( ; x.compareTo( array[ hole / 2 ] ) < 0; hole /= 2 )            array[ hole ] = array[ hole / 2 ];        array[ hole ] = x;                return null;    }        /**     * @throws UnsupportedOperationException because no Positions are returned     * by the insert method for BinaryHeap.     */    public void decreaseKey( PriorityQueue.Position p, Comparable newVal ) {        throw new UnsupportedOperationException( "Cannot use decreaseKey for binary heap" );    }        /**     * Find the smallest item in the priority queue.     * @return the smallest item.     * @throws UnderflowException if empty.     */    public Comparable findMin( ) {        if( isEmpty( ) )            throw new UnderflowException( "Empty binary heap" );        return array[ 1 ];    }        /**     * Remove the smallest item from the priority queue.     * @return the smallest item.     * @throws UnderflowException if empty.     */    public Comparable deleteMin( ) {        Comparable minItem = findMin( );        array[ 1 ] = array[ currentSize-- ];        percolateDown( 1 );                return minItem;    }        /**     * Establish heap order property from an arbitrary     * arrangement of items. Runs in linear time.     */    private void buildHeap( ) {        for( int i = currentSize / 2; i > 0; i-- )            percolateDown( i );    }        /**     * Test if the priority queue is logically empty.     * @return true if empty, false otherwise.     */    public boolean isEmpty( ) {        return currentSize == 0;    }        /**     * Returns size.     * @return current size.     */    public int size( ) {        return currentSize;    }        /**     * Make the priority queue logically empty.     */    public void makeEmpty( ) {        currentSize = 0;    }        private static final int DEFAULT_CAPACITY = 100;        private int currentSize;      // Number of elements in heap    private Comparable [ ] array; // The heap array        /**     * Internal method to percolate down in the heap.     * @param hole the index at which the percolate begins.     */    private void percolateDown( int hole ) {        int child;        Comparable tmp = array[ hole ];                for( ; hole * 2 <= currentSize; hole = child ) {            child = hole * 2;            if( child != currentSize &&                    array[ child + 1 ].compareTo( array[ child ] ) < 0 )                child++;            if( array[ child ].compareTo( tmp ) < 0 )                array[ hole ] = array[ child ];            else                break;        }        array[ hole ] = tmp;    }        /**     * Internal method to extend array.     */    private void doubleArray( ) {        Comparable [ ] newArray;                newArray = new Comparable[ array.length * 2 ];        for( int i = 0; i < array.length; i++ )            newArray[ i ] = array[ i ];        array = newArray;    }        // Test program    public static void main( String [ ] args ) {        int numItems = 10000;        BinaryHeap h1 = new BinaryHeap( );        Integer [ ] items = new Integer[ numItems - 1 ];                int i = 37;        int j;                for( i = 37, j = 0; i != 0; i = ( i + 37 ) % numItems, j++ ) {            h1.insert( new Integer( i ) );            items[ j ] = new Integer( i );        }                for( i = 1; i < numItems; i++ )            if( ((Integer)( h1.deleteMin( ) )).intValue( ) != i )                System.out.println( "Oops! " + i );                BinaryHeap h2 = new BinaryHeap( items );        for( i = 1; i < numItems; i++ )            if( ((Integer)( h2.deleteMin( ) )).intValue( ) != i )                System.out.println( "Oops! " + i );    }}// PriorityQueue interface//// ******************PUBLIC OPERATIONS*********************// Position insert( x )   --> Insert x// Comparable deleteMin( )--> Return and remove smallest item// Comparable findMin( )  --> Return smallest item// boolean isEmpty( )     --> Return true if empty; else false// void makeEmpty( )      --> Remove all items// int size( )            --> Return size// void decreaseKey( p, v)--> Decrease value in p to v// ******************ERRORS********************************// Throws UnderflowException for findMin and deleteMin when empty/** * PriorityQueue interface. * Some priority queues may support a decreaseKey operation, * but this is considered an advanced operation. If so, * a Position is returned by insert. * Note that all "matching" is based on the compareTo method. * @author Mark Allen Weiss */public interface PriorityQueue {    /**     * The Position interface represents a type that can     * be used for the decreaseKey operation.     */    public interface Position {        /**         * Returns the value stored at this position.         * @return the value stored at this position.         */        Comparable getValue( );    }        /**     * Insert into the priority queue, maintaining heap order.     * Duplicates are allowed.     * @param x the item to insert.     * @return may return a Position useful for decreaseKey.     */    Position insert( Comparable x );        /**     * Find the smallest item in the priority queue.     * @return the smallest item.     * @throws UnderflowException if empty.     */    Comparable findMin( );        /**     * Remove the smallest item from the priority queue.     * @return the smallest item.     * @throws UnderflowException if empty.     */    Comparable deleteMin( );        /**     * Test if the priority queue is logically empty.     * @return true if empty, false otherwise.     */    boolean isEmpty( );        /**     * Make the priority queue logically empty.     */    void makeEmpty( );        /**     * Returns the size.     * @return current size.     */    int size( );        /**     * Change the value of the item stored in the pairing heap.     * This is considered an advanced operation and might not     * be supported by all priority queues. A priority queue     * will signal its intention to not support decreaseKey by     * having insert return null consistently.     * @param p any non-null Position returned by insert.     * @param newVal the new value, which must be smaller     *    than the currently stored value.     * @throws IllegalArgumentException if p invalid.     * @throws UnsupportedOperationException if appropriate.     */    void decreaseKey( Position p, Comparable newVal );}/** * Exception class for access in empty containers * such as stacks, queues, and priority queues. * @author Mark Allen Weiss */public class UnderflowException extends RuntimeException {    /**     * Construct this exception object.     * @param message the error message.     */    public UnderflowException( String message ) {        super( message );    }}  

?

热点排行