首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 开发语言 > 编程 >

POJ 3155 最大密度子图 2分+最小割

2012-09-04 
POJ 3155 最大密度子图二分+最小割还是参考amber的论文 最小割那篇这道题建图的话按照论文上建就可以。但是

POJ 3155 最大密度子图 二分+最小割

还是参考amber的论文 最小割那篇


这道题建图的话按照论文上建就可以。

但是对于本题来讲,最最蛋疼的地方绝对不是建图,而是精度。

比方说最后遍历残留网络的时候,因为是double类型么,我理所当然的用了eps去判断与0的关系,然后就杯具了。。。 交了十几次, 赫然发现尼玛直接写>0远比eps好用。

然后二分的部分也需要用到eps的时候,比如high与low的差大于eps,h(g)的值与eps比较,这样的eps从1e-2到1e-10均好使,什么,你想精度再高点?不好意思,再高就wa了

当然, high-low这一部分的eps可以用1.0/n/n来替代,这是一个定理 

注意二分完了,一定要再用low建图求一遍最大流 否则还是wa 据说这是因为这个函数的图形非常奇特,经常会来个突然的变化


#include <iostream>#include <algorithm>#include <cstring>#include <string>#include <cstdio>#include <cmath>#include <queue>#include <map>#include <set>#define eps 1e-5#define MAXN 111#define MAXM 11111#define INF 1000000007using namespace std;struct node{    int ver;    // vertex    double cap;    // capacity    double flow;   // current flow in this arc    int next, rev;}edge[MAXM];int dist[MAXN], numbs[MAXN], src, des, n;int head[MAXN], e;void add(int x, int y, double c){       //e记录边的总数    edge[e].ver = y;    edge[e].cap = c;    edge[e].flow = 0;    edge[e].rev = e + 1;        //反向边在edge中的下标位置    edge[e].next = head[x];   //记录以x为起点的上一条边在edge中的下标位置    head[x] = e++;           //以x为起点的边的位置    //反向边    edge[e].ver = x;    edge[e].cap = 0;  //反向边的初始容量为0    edge[e].flow = 0;    edge[e].rev = e - 1;    edge[e].next = head[y];    head[y] = e++;}void rev_BFS(){    int Q[MAXN], qhead = 0, qtail = 0;    for(int i = 1; i <= n; ++i)    {        dist[i] = MAXN;        numbs[i] = 0;    }    Q[qtail++] = des;    dist[des] = 0;    numbs[0] = 1;    while(qhead != qtail)    {        int v = Q[qhead++];        for(int i = head[v]; i != -1; i = edge[i].next)        {            if(edge[edge[i].rev].cap == 0 || dist[edge[i].ver] < MAXN)continue;            dist[edge[i].ver] = dist[v] + 1;            ++numbs[dist[edge[i].ver]];            Q[qtail++] = edge[i].ver;        }    }}void init(){    e = 0;    memset(head, -1, sizeof(head));}double maxflow(){    int u;    double totalflow = 0;    int Curhead[MAXN], revpath[MAXN];    for(int i = 1; i <= n; ++i)Curhead[i] = head[i];    u = src;    while(dist[src] < n)    {        if(u == des)     // find an augmenting path        {            double augflow = INF;            for(int i = src; i != des; i = edge[Curhead[i]].ver)                augflow = min(augflow, edge[Curhead[i]].cap);            for(int i = src; i != des; i = edge[Curhead[i]].ver)            {                edge[Curhead[i]].cap -= augflow;                edge[edge[Curhead[i]].rev].cap += augflow;                edge[Curhead[i]].flow += augflow;                edge[edge[Curhead[i]].rev].flow -= augflow;            }            totalflow += augflow;            u = src;        }        int i;        for(i = Curhead[u]; i != -1; i = edge[i].next)            if(edge[i].cap > 0 && dist[u] == dist[edge[i].ver] + 1)break;        if(i != -1)     // find an admissible arc, then Advance        {            Curhead[u] = i;            revpath[edge[i].ver] = edge[i].rev;            u = edge[i].ver;        }        else        // no admissible arc, then relabel this vertex        {            if(0 == (--numbs[dist[u]]))break;    // GAP cut, Important!            Curhead[u] = head[u];            int mindist = n;            for(int j = head[u]; j != -1; j = edge[j].next)                if(edge[j].cap > 0)mindist = min(mindist, dist[edge[j].ver]);            dist[u] = mindist + 1;            ++numbs[dist[u]];            if(u != src)                u = edge[revpath[u]].ver;    // Backtrack        }    }    return totalflow;}int d[MAXN];int xx[MAXM], yy[MAXM];int nt, m;int vis[MAXN], ans;void dfs(int u){    vis[u] = 1;    if(u <= nt) ans++;    for(int i = head[u]; i != -1; i = edge[i].next)        if(!vis[edge[i].ver] && edge[i].cap > 0)            dfs(edge[i].ver);}void build(double mid){    for(int i = 1; i <= m; i++)    {        add(xx[i], yy[i], 1);        add(yy[i], xx[i], 1);    }    for(int i = 1; i <= nt; i++)    {        add(src, i, m);        add(i, des, m * 1.0 + 2 * mid - d[i] * 1.0);    }}int main(){    while(scanf("%d%d", &nt, &m) != EOF)    {        if(m == 0)        {            printf("1\n1\n");            continue;        }        memset(d, 0, sizeof(d));        for(int i = 1; i <= m; i++)        {            scanf("%d%d", &xx[i], &yy[i]);            d[xx[i]]++;            d[yy[i]]++;        }        double low = 0, high = m;        src = nt + 1;        des = nt + 2;        n = des;        while(high - low > 1.0 / nt / nt)        {            init();            double mid = (low + high) / 2;            build(mid);            rev_BFS();            double h = (m * nt * 1.0 - maxflow()) / 2;            if(h > eps) low = mid;            else high = mid;        }        init();        build(low);        rev_BFS();        maxflow();        memset(vis, 0, sizeof(vis));        ans = 0;        dfs(src);        printf("%d\n", ans);        for(int i = 1; i <= nt; i++)            if(vis[i]) printf("%d\n", i);    }    return 0;}



热点排行