首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 数据库 > SQL Server >

Hadoop MapReduce 学习札记(十二) MapReduce实现类似SQL的order by/排序3 改进及改正

2012-07-26 
Hadoop MapReduce 学习笔记(十二) MapReduce实现类似SQL的order by/排序3 改进及改正? ? ? 本博客属创文章

Hadoop MapReduce 学习笔记(十二) MapReduce实现类似SQL的order by/排序3 改进及改正

? ? ? 本博客属创文章,转载请注明出处:http://guoyunsky.iteye.com/blog/1235954

? ? ? 欢迎加入Hadoop超级群:?180941958

?????? 本博客已迁移到本人独立博客: http://www.yun5u.com/articles/hadoop-mapreduce-sql-order-by-sort-improve-fix.html

?????? 请先阅读:??????????

?????????? 1.Hadoop MapReduce 学习笔记(一) 序言和准备

?????????? 2.Hadoop MapReduce 学习笔记(二) 序言和准备 2

?????????????? 3.Hadoop MapReduce 学习笔记(八) MapReduce实现类似SQL的order by/排序

??????????????? 4.Hadoop MapReduce 学习笔记(九) MapReduce实现类似SQL的order by/排序 正确写法

??????????????? 5.Hadoop MapReduce 学习笔记(十) MapReduce实现类似SQL的order by/排序2 对多个字段排序

??????????????? 6.Hadoop MapReduce 学习笔记(十一) MapReduce实现类似SQL的order by/排序3 改进

?

????????? 下一篇:

??????? 上一篇博客Hadoop MapReduce 学习笔记(十一) MapReduce实现类似SQL的order by/排序3 改进获得的结果并不是正确的结果,折腾了一小时没找到原因.于是参考hadoop/examples下面的SecondarySort.照搬里面的一些做法才纠正.这里先标记一下,待日后了解原理后再找出答案.

?

package com.guoyun.hadoop.mapreduce.study;import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.RawComparator;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.WritableComparator;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Partitioner;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.slf4j.Logger;import org.slf4j.LoggerFactory;/** * 通过MapReduce实现类似SELECT * FROM TABLE ORDER BY COL1 ASC,COL2 DESC功能 * 也就是对多个字段的排序 * 相比 @OrderByMultiMapReduceTest,主要引入了Partitioner和GroupingComparator,提升性能 * 由于生成的数据frameworkName比较固定(具体请查看 @MyMapReduceMultiColumnTest 如何生成的数据) * 所以这里获取map输出key的frameworkName属性,交给Partitioner和GroupingComparator来确定相同 * frameworkName的数据输出到相同的Reduce上,尽可能减少Reduce之前的清洗和排序工作,提升性能. * 具体Partitioner和GroupingComparator的用法请查看Hadoop说明. * 这里只是我目前对Partitioner和GroupingComparator的理解,刻意安排的输入数据.一切还需要验证中,待有机会 * 查看map和reduce源码后再来求证. * 本类相比 @OrderByMultiMapReduceImproveTest 纠正了结果不正确的错误 *  * 注: * 查看结果可以发现,其实这也是一个group by的实现 */public class OrderByMultiMapReduceImproveFixTest extends  OrderByMultiMapReduceTest {  public static final Logger log=LoggerFactory.getLogger(OrderByMultiMapReduceImproveFixTest.class);    public OrderByMultiMapReduceImproveFixTest(long dataLength, String inputPath,      String outputPath) throws Exception {    super(dataLength, inputPath, outputPath);    // TODO Auto-generated constructor stub  }  public OrderByMultiMapReduceImproveFixTest(long dataLength) throws Exception {    super(dataLength);    // TODO Auto-generated constructor stub  }  public OrderByMultiMapReduceImproveFixTest(String inputPath, String outputPath) {    super(inputPath, outputPath);    // TODO Auto-generated constructor stub  }  public OrderByMultiMapReduceImproveFixTest(String outputPath)      throws Exception {    super(outputPath);    // TODO Auto-generated constructor stub  }    /**   * 继承OrderMultiColumnWritable,新增WritableComparator,并注入到WritableComparator中   * 增加本类就可以解决OrderByMultiMapReduceImproveTest输出结果不一致的错误,具体原因还待探索   */  public static class OrderMultiColumnFixWritable extends OrderMultiColumnWritable{    /**     * 增加这个WritableComparator就可以解决OrderByMultiMapReduceImproveTest     * 原理还不清楚,待探索     */    public static class MyComparator extends WritableComparator {      public MyComparator() {        super(OrderMultiColumnWritable.class);      }      public int compare(byte[] b1, int s1, int l1,                         byte[] b2, int s2, int l2) {        return compareBytes(b1, s1, l1, b2, s2, l2);      }    }    static {                                              // register this comparator      WritableComparator.define(OrderMultiColumnWritable.class, new MyComparator());    }      }      /**   * map,get the source datas,and generate a (key,value) pair as (MultiWritable,NullWritable)    */  public static class MyMapper extends Mapper<LongWritable,Text,OrderMultiColumnWritable,LongWritable>{    private OrderMultiColumnWritable writeKey=new OrderMultiColumnWritable();    private LongWritable writeValue=new LongWritable(0);        @Override    protected void map(LongWritable key, Text value, Context context)        throws IOException, InterruptedException {      log.debug("begin to map");      String[] splits=null;            try {        splits=value.toString().split("\\t");        if(splits!=null&&splits.length==2){          writeKey.set(splits[0],Long.parseLong(splits[1].trim()));          writeValue.set(writeKey.getNumber());        }      } catch (NumberFormatException e) {        log.error("map error:"+e.getMessage());      }            context.write(writeKey, writeValue);    }      }    /**   * reduce,only use to output the result   */  public static class MyReducer     extends Reducer<OrderMultiColumnWritable,LongWritable,Text,LongWritable>{    private Text writeKey=new Text();    @Override    protected void reduce(OrderMultiColumnWritable key,        Iterable<LongWritable> values,Context context) throws IOException,        InterruptedException {            writeKey.set(key.getFrameworkName());      for(LongWritable value:values){         context.write(writeKey, value);      }          }      }    /**   * partitioner   */  public static class MyPartitioner extends Partitioner<OrderMultiColumnWritable,LongWritable>{    @Override    public int getPartition(OrderMultiColumnWritable key, LongWritable value,        int numbers) {      return (int)Math.abs(key.getFrameworkName().hashCode()%numbers);    }      }      /**   * GroupingComparator   */  public static class MyGroupingComparator implements RawComparator<OrderMultiColumnWritable>{    @Override    public int compare(OrderMultiColumnWritable o1,        OrderMultiColumnWritable o2) {      return o1.getFrameworkName().compareTo(o2.getFrameworkName());    }    @Override    public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2,        int l2) {      return WritableComparator.compareBytes(b1,s1,l1,b2,s2,l2);    }      }    public static void main(String[] args){    MyMapReduceTest mapReduceTest=null;    Configuration conf=null;    Job job=null;    FileSystem fs=null;    Path inputPath=null;    Path outputPath=null;    long begin=0;    String input="testDatas/mapreduce/MRInput_Multi_OrderBy";    String output="testDatas/mapreduce/MROutput_Multi_OrderBy_Improve_Fix";            try {      // 直接使用MRInput_Single_OrderBy的输入数据,不重新生成数据,以便比对结果是否正确      // 和MROutput_Multi_OrderBy输出结果进行比对      mapReduceTest=new OrderByMultiMapReduceImproveFixTest(input,output);            inputPath=new Path(mapReduceTest.getInputPath());      outputPath=new Path(mapReduceTest.getOutputPath());            conf=new Configuration();      job=new Job(conf,"OrderBy");            fs=FileSystem.getLocal(conf);      if(fs.exists(outputPath)){        if(!fs.delete(outputPath,true)){          System.err.println("Delete output file:"+mapReduceTest.getOutputPath()+" failed!");          return;        }      }                  job.setJarByClass(OrderByMultiMapReduceImproveFixTest.class);      job.setMapOutputKeyClass(OrderMultiColumnWritable.class);      job.setMapOutputValueClass(LongWritable.class);      job.setOutputKeyClass(Text.class);      job.setOutputValueClass(LongWritable.class);      job.setMapperClass(MyMapper.class);      job.setReducerClass(MyReducer.class);            job.setPartitionerClass(MyPartitioner.class);      job.setGroupingComparatorClass(MyGroupingComparator.class);            job.setNumReduceTasks(2);            FileInputFormat.addInputPath(job, inputPath);      FileOutputFormat.setOutputPath(job, outputPath);            begin=System.currentTimeMillis();      job.waitForCompletion(true);            System.out.println("===================================================");      if(mapReduceTest.isGenerateDatas()){        System.out.println("The maxValue is:"+mapReduceTest.getMaxValue());        System.out.println("The minValue is:"+mapReduceTest.getMinValue());      }      System.out.println("Spend time:"+(System.currentTimeMillis()-begin));      // Spend time:1270          } catch (Exception e) {      // TODO Auto-generated catch block      e.printStackTrace();    }      }}

热点排行