Hadoop MapReduce 学习笔记(十二) MapReduce实现类似SQL的order by/排序3 改进及改正
? ? ? 本博客属创文章,转载请注明出处:http://guoyunsky.iteye.com/blog/1235954
? ? ? 欢迎加入Hadoop超级群:?180941958
?????? 本博客已迁移到本人独立博客: http://www.yun5u.com/articles/hadoop-mapreduce-sql-order-by-sort-improve-fix.html
?????? 请先阅读:??????????
?????????? 1.Hadoop MapReduce 学习笔记(一) 序言和准备
?????????? 2.Hadoop MapReduce 学习笔记(二) 序言和准备 2
?????????????? 3.Hadoop MapReduce 学习笔记(八) MapReduce实现类似SQL的order by/排序
??????????????? 4.Hadoop MapReduce 学习笔记(九) MapReduce实现类似SQL的order by/排序 正确写法
??????????????? 5.Hadoop MapReduce 学习笔记(十) MapReduce实现类似SQL的order by/排序2 对多个字段排序
??????????????? 6.Hadoop MapReduce 学习笔记(十一) MapReduce实现类似SQL的order by/排序3 改进
?
????????? 下一篇:
??????? 上一篇博客Hadoop MapReduce 学习笔记(十一) MapReduce实现类似SQL的order by/排序3 改进获得的结果并不是正确的结果,折腾了一小时没找到原因.于是参考hadoop/examples下面的SecondarySort.照搬里面的一些做法才纠正.这里先标记一下,待日后了解原理后再找出答案.
?
package com.guoyun.hadoop.mapreduce.study;import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.RawComparator;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.WritableComparator;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Partitioner;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.slf4j.Logger;import org.slf4j.LoggerFactory;/** * 通过MapReduce实现类似SELECT * FROM TABLE ORDER BY COL1 ASC,COL2 DESC功能 * 也就是对多个字段的排序 * 相比 @OrderByMultiMapReduceTest,主要引入了Partitioner和GroupingComparator,提升性能 * 由于生成的数据frameworkName比较固定(具体请查看 @MyMapReduceMultiColumnTest 如何生成的数据) * 所以这里获取map输出key的frameworkName属性,交给Partitioner和GroupingComparator来确定相同 * frameworkName的数据输出到相同的Reduce上,尽可能减少Reduce之前的清洗和排序工作,提升性能. * 具体Partitioner和GroupingComparator的用法请查看Hadoop说明. * 这里只是我目前对Partitioner和GroupingComparator的理解,刻意安排的输入数据.一切还需要验证中,待有机会 * 查看map和reduce源码后再来求证. * 本类相比 @OrderByMultiMapReduceImproveTest 纠正了结果不正确的错误 * * 注: * 查看结果可以发现,其实这也是一个group by的实现 */public class OrderByMultiMapReduceImproveFixTest extends OrderByMultiMapReduceTest { public static final Logger log=LoggerFactory.getLogger(OrderByMultiMapReduceImproveFixTest.class); public OrderByMultiMapReduceImproveFixTest(long dataLength, String inputPath, String outputPath) throws Exception { super(dataLength, inputPath, outputPath); // TODO Auto-generated constructor stub } public OrderByMultiMapReduceImproveFixTest(long dataLength) throws Exception { super(dataLength); // TODO Auto-generated constructor stub } public OrderByMultiMapReduceImproveFixTest(String inputPath, String outputPath) { super(inputPath, outputPath); // TODO Auto-generated constructor stub } public OrderByMultiMapReduceImproveFixTest(String outputPath) throws Exception { super(outputPath); // TODO Auto-generated constructor stub } /** * 继承OrderMultiColumnWritable,新增WritableComparator,并注入到WritableComparator中 * 增加本类就可以解决OrderByMultiMapReduceImproveTest输出结果不一致的错误,具体原因还待探索 */ public static class OrderMultiColumnFixWritable extends OrderMultiColumnWritable{ /** * 增加这个WritableComparator就可以解决OrderByMultiMapReduceImproveTest * 原理还不清楚,待探索 */ public static class MyComparator extends WritableComparator { public MyComparator() { super(OrderMultiColumnWritable.class); } public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { return compareBytes(b1, s1, l1, b2, s2, l2); } } static { // register this comparator WritableComparator.define(OrderMultiColumnWritable.class, new MyComparator()); } } /** * map,get the source datas,and generate a (key,value) pair as (MultiWritable,NullWritable) */ public static class MyMapper extends Mapper<LongWritable,Text,OrderMultiColumnWritable,LongWritable>{ private OrderMultiColumnWritable writeKey=new OrderMultiColumnWritable(); private LongWritable writeValue=new LongWritable(0); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { log.debug("begin to map"); String[] splits=null; try { splits=value.toString().split("\\t"); if(splits!=null&&splits.length==2){ writeKey.set(splits[0],Long.parseLong(splits[1].trim())); writeValue.set(writeKey.getNumber()); } } catch (NumberFormatException e) { log.error("map error:"+e.getMessage()); } context.write(writeKey, writeValue); } } /** * reduce,only use to output the result */ public static class MyReducer extends Reducer<OrderMultiColumnWritable,LongWritable,Text,LongWritable>{ private Text writeKey=new Text(); @Override protected void reduce(OrderMultiColumnWritable key, Iterable<LongWritable> values,Context context) throws IOException, InterruptedException { writeKey.set(key.getFrameworkName()); for(LongWritable value:values){ context.write(writeKey, value); } } } /** * partitioner */ public static class MyPartitioner extends Partitioner<OrderMultiColumnWritable,LongWritable>{ @Override public int getPartition(OrderMultiColumnWritable key, LongWritable value, int numbers) { return (int)Math.abs(key.getFrameworkName().hashCode()%numbers); } } /** * GroupingComparator */ public static class MyGroupingComparator implements RawComparator<OrderMultiColumnWritable>{ @Override public int compare(OrderMultiColumnWritable o1, OrderMultiColumnWritable o2) { return o1.getFrameworkName().compareTo(o2.getFrameworkName()); } @Override public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { return WritableComparator.compareBytes(b1,s1,l1,b2,s2,l2); } } public static void main(String[] args){ MyMapReduceTest mapReduceTest=null; Configuration conf=null; Job job=null; FileSystem fs=null; Path inputPath=null; Path outputPath=null; long begin=0; String input="testDatas/mapreduce/MRInput_Multi_OrderBy"; String output="testDatas/mapreduce/MROutput_Multi_OrderBy_Improve_Fix"; try { // 直接使用MRInput_Single_OrderBy的输入数据,不重新生成数据,以便比对结果是否正确 // 和MROutput_Multi_OrderBy输出结果进行比对 mapReduceTest=new OrderByMultiMapReduceImproveFixTest(input,output); inputPath=new Path(mapReduceTest.getInputPath()); outputPath=new Path(mapReduceTest.getOutputPath()); conf=new Configuration(); job=new Job(conf,"OrderBy"); fs=FileSystem.getLocal(conf); if(fs.exists(outputPath)){ if(!fs.delete(outputPath,true)){ System.err.println("Delete output file:"+mapReduceTest.getOutputPath()+" failed!"); return; } } job.setJarByClass(OrderByMultiMapReduceImproveFixTest.class); job.setMapOutputKeyClass(OrderMultiColumnWritable.class); job.setMapOutputValueClass(LongWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); job.setMapperClass(MyMapper.class); job.setReducerClass(MyReducer.class); job.setPartitionerClass(MyPartitioner.class); job.setGroupingComparatorClass(MyGroupingComparator.class); job.setNumReduceTasks(2); FileInputFormat.addInputPath(job, inputPath); FileOutputFormat.setOutputPath(job, outputPath); begin=System.currentTimeMillis(); job.waitForCompletion(true); System.out.println("==================================================="); if(mapReduceTest.isGenerateDatas()){ System.out.println("The maxValue is:"+mapReduceTest.getMaxValue()); System.out.println("The minValue is:"+mapReduceTest.getMinValue()); } System.out.println("Spend time:"+(System.currentTimeMillis()-begin)); // Spend time:1270 } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } }}