教你透彻了解红黑树(修订版)
此图忽略了叶子和根部的父结点。总之,可以这样表示,就对了。:D。
二、树的旋转知识
当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质。
为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树种某些结点的颜色及指针结构,以达到对红黑树进行
插入、删除结点等操作时,红黑树依然能保持它特有的性质(如上文所述的,五点性质)。
树的旋转,分为左旋和右旋,以下借助图来做形象的解释和介绍:
1.左旋
如上图所示:
当在某个结点pivot上,做左旋操作时,我们假设它的右孩子y不是NIL[T],pivot可以为树内任意右孩子而不是NIL[T]的结点。
左旋以pivot到y之间的链为“支轴”进行,它使y成为该孩子树新的根,而y的左孩子b则成为pivot的右孩子。
来看算法导论对此操作的算法实现(以x代替上述的pivot):
RB-INSERT(T, z)
1 y ← nil[T]
2 x ← root[T]
3 while x ≠ nil[T]
4 do y ← x
5 if key[z] < key[x]
6 then x ← left[x]
7 else x ← right[x]
8 p[z] ← y
9 if y = nil[T]
10 then root[T] ← z
11 else if key[z] < key[y]
12 then left[y] ← z
13 else right[y] ← z
14 left[z] ← nil[T]
15 right[z] ← nil[T]
16 color[z] ← RED
17 RB-INSERT-FIXUP(T, z)
1 while color[p[z]] = RED
2 do if p[z] = left[p[p[z]]]
3 then y ← right[p[p[z]]]
4 if color[y] = RED
5 then color[p[z]] ← BLACK ? Case 1
6 color[y] ← BLACK ? Case 1
7 color[p[p[z]]] ← RED ? Case 1
8 z ← p[p[z]] ? Case 1
9 else if z = right[p[z]]
10 then z ← p[z] ? Case 2
11 LEFT-ROTATE(T, z) ? Case 2
12 color[p[z]] ← BLACK ? Case 3
13 color[p[p[z]]] ← RED ? Case 3
14 RIGHT-ROTATE(T, p[p[z]]) ? Case 3
15 else (same as then clause
with "right" and "left" exchanged)
16 color[root[T]] ← BLACK
1 if left[z] = nil[T] or right[z] = nil[T]
2 then y ← z
3 else y ← TREE-SUCCESSOR(z)
4 if left[y] ≠ nil[T]
5 then x ← left[y]
6 else x ← right[y]
7 p[x] ← p[y]
8 if p[y] = nil[T]
9 then root[T] ← x
10 else if y = left[p[y]]
11 then left[p[y]] ← x
12 else right[p[y]] ← x
13 if y 3≠ z
14 then key[z] ← key[y]
15 copy y's satellite data into z
16 if color[y] = BLACK
17 then RB-DELETE-FIXUP(T, x)
18 return y
RB-DELETE-FIXUP(T, x)
1 while x ≠ root[T] and color[x] = BLACK
2 do if x = left[p[x]]
3 then w ← right[p[x]]
4 if color[w] = RED
5 then color[w] ← BLACK ? Case 1
6 color[p[x]] ← RED ? Case 1
7 LEFT-ROTATE(T, p[x]) ? Case 1
8 w ← right[p[x]] ? Case 1
9 if color[left[w]] = BLACK and color[right[w]] = BLACK
10 then color[w] ← RED ? Case 2
11 x p[x] ? Case 2
12 else if color[right[w]] = BLACK
13 then color[left[w]] ← BLACK ? Case 3
14 color[w] ← RED ? Case 3
15 RIGHT-ROTATE(T, w) ? Case 3
16 w ← right[p[x]] ? Case 3
17 color[w] ← color[p[x]] ? Case 4
18 color[p[x]] ← BLACK ? Case 4
19 color[right[w]] ← BLACK ? Case 4
20 LEFT-ROTATE(T, p[x]) ? Case 4
21 x ← root[T] ? Case 4
22 else (same as then clause with "right" and "left" exchanged)
23 color[x] ← BLACK