(一)轮流工作
轮流工作除了要计算每轮工作的效率(即几个人的效率和),还要注意最后一轮工作中每个人的实际工作量。
【例题3】 一条隧道,甲单独挖要20天完成,乙单独挖要10天完成。如果甲先挖1天,然后乙接替甲挖1天,再由甲接替乙挖1天……两人如此交替工作。那么,挖完这条隧道共用多少天?
A.14 B.16 C.15 D.13
解析:设隧道工作量为20,则甲、乙的效率(每天完成的工作量)分别为1、2,两人各干1天完成1+2=3。20=3×6+1+1,即甲、乙先各干6天,然后甲干1天,剩下的工程量为1,由乙半天完成,因此总的工作时间为6×2+1+1=14天,选A。
由上题可知在多人工程问题中,可设工作量为每个人单独完成所用时间的公倍数,以减少对分式的计算。
(二)混合工作
如果把整个工程的完成划分为若干时段,有的时段只有一个人工作,有的时段几个人一起工作,这种情况称为混合工作。由于每个人的效率不发生变化,这类问题重点是求效率。
【例题4】 一篇文章,现有甲、乙、丙三人,如果由甲乙两人合作翻译,需要10小时完成;如果由乙丙两人合作翻译,需要12小时完成;现在先由甲丙两人合作翻译4小时,剩下的再由乙单独翻译,需要12小时才能完成。则这篇文章如果全部由乙单独翻译,需要( )小时能够完成。
A.15 B.18 C.20 D.25

(三)合作效率改变
在单人工程问题中,若工作效率改变,可直接应用比例关系。在多人工程问题中,要理清合作效率。
【例题5】 某工厂的一个生产小组,当每个工人在自己的工作岗位上工作时,9小时可以完成一项生产任务。如果交换工人甲和乙的工作岗位,其他人的工作岗位不变时,可提前1小时完成任务;如果交换工人丙和丁的工作岗位,其他人的工作岗位不变时,也可提前1小时完成任务。如果同时交换甲和乙、丙和丁的工作岗位,其他人的工作岗位不变,可以提前多少小时完成这项任务?
A.1.6 B.1.8 C.2.0 D.2.4
