首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 考研频道 > MBA/EMBA/MPA >

MBA数学备考之从数列递推到N球配对问题(2)

2012-06-01 
从数列递推到N球配对问题

  4、现在用上面的思路来解决一个著名的问题:

  N个球和N个盒子分别编号从1到N,N个球各放入一个盒子,求没有球与盒子编号相同的放法总数。

  解:设A(N)为球数为N时满足条件的放法(以下称无配对放法)总数,

  易知A1=0,A2=1

  当N》2时,一号球共有N-1种放法,假设1号球放入X号盒子

  在剩下的N-1个球和N-1个盒子中,如X号球正好放入1号盒子,

  问题等价于有N-2个球的无配对放法,放法总数为:A(N-2)

  在剩下的N-1个球和N-1个盒子中,如X号球没有放入1号盒子,

  则可以把X号球看作1号球,问题等价于有N-1个球的无配对放法,

  放法总数为:A(N-1)

  因此有 A(N)=(N-1)*[A(N-1)+A(N-2)]

  上式可变换为: A(N)-NA(N-1)

  =-[A(N-1)-(N-1)*A(N-2)]

  按等比数列得出: A(N)-NA(N-1)=(-1)^N

  上式除以N!得出:

  A(N) A(N-1) (-1)^N

  ------- = ---------------- + -----------------

  N! (N-1)! N!

  把 A(N)/N!当作新的数列, 把(-1)^N/N!也作为一个数列

  则 A(N)等于数列 (-1)^N/N!从第二项到第N项的和再乘以N

  另外可得出:

  N球恰有K球与盒子配对的放法总数为: C(N,K)*A(N-K)

热点排行