4、现在用上面的思路来解决一个著名的问题:
N个球和N个盒子分别编号从1到N,N个球各放入一个盒子,求没有球与盒子编号相同的放法总数。
解:设A(N)为球数为N时满足条件的放法(以下称无配对放法)总数,
易知A1=0,A2=1
当N》2时,一号球共有N-1种放法,假设1号球放入X号盒子
在剩下的N-1个球和N-1个盒子中,如X号球正好放入1号盒子,
问题等价于有N-2个球的无配对放法,放法总数为:A(N-2)
在剩下的N-1个球和N-1个盒子中,如X号球没有放入1号盒子,
则可以把X号球看作1号球,问题等价于有N-1个球的无配对放法,
放法总数为:A(N-1)
因此有 A(N)=(N-1)*[A(N-1)+A(N-2)]
上式可变换为: A(N)-NA(N-1)
=-[A(N-1)-(N-1)*A(N-2)]
按等比数列得出: A(N)-NA(N-1)=(-1)^N
上式除以N!得出:
A(N) A(N-1) (-1)^N
------- = ---------------- + -----------------
N! (N-1)! N!
把 A(N)/N!当作新的数列, 把(-1)^N/N!也作为一个数列
则 A(N)等于数列 (-1)^N/N!从第二项到第N项的和再乘以N
另外可得出:
N球恰有K球与盒子配对的放法总数为: C(N,K)*A(N-K)