【例1】小红把平时节省下来的全部五分硬币先围成一个三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是( )。
A.1元
B.2元
C.3元
D.4元
【传统解析】设围成三角形时每边硬币数为X枚,则利用方阵的原理,根据硬币总数相等可列方程:
3(X-1)=4(X-5-1),
解方程得X=21,
则硬币总数为3×(21-1)=60枚,
面值=60×5分=300分=3元,选C。
【公倍数法】根据题意,全部五分硬币围成正三角形正好用完,说明硬币数是3的倍数;改围正方形也正好用完,说明硬币数是也是4的倍数,换句话说,硬币总数是3和4的最小公倍数12的倍数,备选项中符合此条件的只有C 项的3元,即60枚。
【对比分析】运用第一种方法解出本道试题最少需要1分钟,因为计算方阵问题时,其边长和外围数存在加1(或减1)的情况,而一般的考生往往在这里理不清,所以列出方程最快也的1分钟,加上计算最快也需要1分半钟。
有的考生如果根据边长之间的关系“正方形的每条边比三角形的每条边少用5枚硬币”列方程求解,这道试题对数学基础好的考生来说,最少也需要2分半钟,数学基础不好的话,可能方程式也列不出来,就更不用说求解了。
如果能脱开传统“设未知数、列方程”的思路,根据题中的相关信息,巧用“公倍数法”求解,本题只需5秒钟就可求出正确答案,而且根本不会出错。如果这样的话,用传统思路解一道题,用公倍数法就可以解六七道试题,甚至更多,因为数学运算中的大部分试题都可以用此方法,或是类似的方法求解的。

【对比分析】利用第一种传统方法,既费时间(解本道试题起码需30秒,甚至更多),又容易出错(好多考生还得考虑题中的8和1,到底是加上,还是减去);利用公倍数法,就大大减少了列方程的时间,也省却了到底是加上8和1,还是减去8和1等问题,省时(最多需要5秒钟)省力又准确。
【例3】甲、乙、丙三人,甲每分钟走50米,乙每分钟走40米,丙每分钟走35米,甲、乙从A地,丙从B地同时出发,向相而形,丙遇到甲2分钟后遇到乙,那么,A、B两地相距多少米?
A. 250米
B. 500米
C. 750米
D. 1275米
【传统解析】设A、B两地相距S米,依“丙遇到甲2分钟后遇到乙”所表示的数量关系可列出方程:
S/(40+35)-S/(50+35)=2
解方程得S=1275米,选D。
【公倍数法】依“丙遇到甲2分钟后遇到乙”所表示的数量关系可知,A、B两地之间的距离是甲丙速度之和50+35=85的倍数,也是乙丙速度之和40+35=75的倍数,即为85和75的公倍数的倍数,备选项中符合此条件的只有D。
【对比分析】同上述各题的分析一样,如果用传统思路设未知数列方程求解本题的话,根据题中的数量关系怎样列方程就比较费时间,列出方程之后还得求解,更费时间,求解的过程中稍微不小心很容易出错。如果换一种思路用公倍数法求解,省时省力又准确。通过本题与上述各题的解法可以知道,“公倍数法”对各种类型的数学运算都有用,而不是仅仅局限在某几种类型的试题的解析中。下面可以再用实例验证一下这种方法的实用性和应用上的广泛性。