读书人网文档频道给广大网友提供最实用的文档资料: http://www.reader8.net/data/ 拓展双基谋求发展 摘要:“双基教学”构成中国数学教学的主要特征。它倡导变式教学、注重实质、倾向接受学习、重视问题解决等特征支撑着传
读书人网文档频道给广大网友提供最实用的文档资料: http://www.reader8.net/data/
建构自己的理解。即使是看别人做,也须在思想上投入,并转化为自己的操作过程,无人可以替代。我们强调技能训练,其功能之一就是在促使学生“下海”。让他们进入问题的情境,在游泳中学习游泳。”通过关于“熟能生巧”的研究,表明熟练而灵活多变的数学操作有利于数学概念的形成。善于运用公式和规律进行运算,能从机械操作变成数学运算能力。计算的熟练和公式的记忆,使得“数学思维更加简约、快速”,便于向更高层次的思维前进。
再如背诵──有意义的识记,十分重要。奥苏伯尔的有意义学习,支持有意义的记忆和模仿。人的知识总是“间接经验为多数”,直接经验是少量的。学习数学不可能事事“探索”“发现”。同样“精讲多练”具有一定的合理性。教师的讲解是重要的一环。精讲,要把教师的深切体会,用最有效的方式传授给学生。与此同时,强调学生自己的操作练习,必须有足够的练习才能获得巩固的知识。认为“建构主义”否定教师的讲授,学生只要探索无需联系的看法,并不符合学生主动建构知识的规律。
顾泠沅等研究变式练习,提出概念变式和过程变式的概念,中国的数学练习不是简单的重复。数学“双基”教学是一个动态的概念,随着时代的发展也在发生变化。通过“变式”的研究,发现中国的“双基”能够发展为有意义的学习,在变换非本质属性的过程中掌握数学概念的本质属性,在剔除次要因素的过程中暴露数学思维的主要方面。熟能生巧,是中国教育的传统格言。只有充分熟练才可能深刻理解,对学习的内容进行有效存储、检索、调用。
三、倾向接受学习,淡化形式,注重实质
我国数学教学模式基本上沿用五环节教学法:复习──导人──讲解──巩固──布置作业。强调教师在课堂上的主导作用。注重数学教学的效率。把最主要的数学内容尽快呈现出来,避免学生走太多的弯路。注重逻辑思维能力的培养。着重数学内容的逻辑分析,检查解题过程中的逻辑关系,以不出逻辑错误为教学的基本要求。
注重数学思想方法的培养,反复进行讲解训练。例如,不重不漏的分类,四种命题的互换,充分必要条件的理解,分析、归纳、综合、类比、联想、化归、RMI原理的总结和运用。接受学习常被人认为是机械学习。奥萨贝尔用意义学习理论加以科学分析,指明它不能与机械学习划等号,而完全可以是有意义的。接受学习是机械的还是有意义的,取决于学习发生的条件。意义学习需具备两个条件:①学生要具有意义学习的心向,即把新知识与认知结构中原有的适当观念关联起来的意向。②学习材料对学生具有潜在意义,即学习材料具有逻辑意义,可以与学生认知结构中可利用的有关的旧知识相联系。这两个条件缺一不可,否则会导致机械学习。
有意义的接受学习是一个积极主动的过程。它要求学生进行一系列活动:①在决定将新知识输入到已有的知识中去时,需要对新旧知识的“适合性”作出明确的判断;②当新旧知识存在分歧或发生矛盾时需要进行调节;③新的命题通常需要转化为个人的参照系与学生个人的经验背景、词汇、观念结构趋于一致;④如果找不到作为调节新旧知识分歧或矛盾的基础,需要对更有概括性、容纳性的概念重新组织。然而,这里的学习任务实质上是呈现而不是发现,上述活动限于要求理解学习材料的意义,新旧知识趋于一体化。
许多学科的材料都是有一定的组织体系的,其中,大部分内容,特别是一些理论性材料,不一定需要亲身实践和独立发现,通过有意义的接受学习就可以掌握。在这一点上说,有意义的接受学习是一种有效的手段。它比发现学习更为经济实惠。然而,实际生活中的许多问题则需通过发现学习才能解决。此外,组织教学以有意义的接受学习为主时,其重要职能是组织教材,使清晰、稳定而明确的意义得以实现,并作为有组织的知识体系长期坚持下去。它要求教师进行创造性劳动而不是照本宣科。
四、构建双基平台,数学思考,问题解决
在掌握了双基模块之后,必须寻求双基的发展,这便是“双基平台”。双基平台具有以下特征。基础性:直接植根于双基,是双基模块的组合、深化与发展;综合性:双基平台跨越多个知识点,综合几个“双基模块”,形成数学知识之间相互联结;发展性:双基平台主要为数学解题服务,能够居高望远,看清一些数学问题的来龙去脉,获得解题的策略。
过去的“双基”强调“形式化的逻辑演绎”能力,这是不完整的。事实上,学习数学知识的背景及其应用,培养数学建模的能力同样是“数学双基”的组成部分。通过徐利治教授的“数学思想方法”的研究,把机械的逻辑推理上升为逻辑思维能力,能够从整体上把握中学数学的思想体系,有系统化的认识。注重数学思想方法的培养,反复进行讲解训练。例如,不重不漏的分类,四种命题的互换,充分必要条件的理解,分析、归纳、综合、类比、联想、化归、RMI原理的总结和运用。
问题解决是把前面学到的知识用到新的和不熟悉的情境中的过程,而学习数学的主要目的在于问题解决。最近20年来,世界上几乎所有的国家都把提高学生的问题解决能力作为数学教学的主要目的之一。
数学问题解决教学是通过创设情境,激发学生的求知欲望,使学生亲身体验和感受分析问题、解决问题的全过程。它强调使用数学的意识,培养学生的探索精神、合作意识和实际操作能力。通过问题解决能使学生对数学知识形成深刻的、结构化的理解,形成自己的、可以迁移的问题解决策略,而且产生更为浓厚的学习数学的兴趣、形成认真求知的科学态度和勇于进取的坚定信念。由于问题解决教学是近年来受到广泛重视的一种教学模式,它强调把学习设置到复杂的、有意义的问题情境中,通过让学习者合作解决实际问题来学习隐含于问题背后的科学知识,形成解决问题的技能,并形成自主学习的能力。所以,问题解决教学是通过高水平的思维来进行学习,来建构知识的。
在数学问题解决的教学过程中,既要注重发挥学生的主体作用,又要重视教师主导作用的发挥,二者相辅相成,不可偏废。特别是在讲到探索、猜想、发现方面的问题时要侧重于“教”;有时候可以直接教给学生完整的猜想过程,有时候则要较多地启发、诱导和点拨。因此,在一些典型的数学问题解决教学中,教给学生比较完整的解决实际问题的过程和常用方法,以提高学生解决实际问题的能力,应引起广大数学教师的高度重视。
把握数学“双基”和数学创新的关系。创新是民族的灵魂,也是社会进步的主旋律。数学不应该例外。我们不能仅仅把“重视基础”作为我国数学教育的关键课题来处理。一个完整的数学教育模式,一个科学的数学教育理论,都必须把“基础”和“创造”这两个方面同时加以研究。没有基础的创新是空想,没有创新指导的“打基础”是傻练。基础要为发展服务,盲目地打基础,过量的练习是无效劳动。在花岗岩基础上搭一个茅草房,不是我们要看到的。“以学生的发展为本”,把“数学双基”和“数学创新”放在一起进行研究,找出适度的平衡,必将成为未来数学“双基”研究的指导思想。
学习国际上先进的心理学理论,用以观察研究和总结“数学双基”的心理学机制。在此基础上,发展我们自己的数学学习心理学研究,争取给“数学双基”一个更加科学的解释。同时,这也是我国数学教育走向国际的必由之路。用国际上通用的语言和理论,把我国的“数学双基”教学介绍到国外,是一件有意义的工作。诸如“熟能生巧”“变式教学”“开放题研究”等等具有中国特色的数学“双基”研究还应该大力支持。
参考文献:
[1] 中华人民共和国教育部.全日制义务教育数学课程标准(实验稿)[M].北京:北京师范大学出版社,2011.
[2]张奠宙. 中国数学双基教学理论框架[J].数学教育学报,2006,3(1):1-4.