基本信息·出版社:清华大学出版社 ·ISBN:7302082332 ·条形码:9787302082330 ·版本:第1版 ·装帧:平装 ...
商家名称 |
信用等级 |
购买信息 |
订购本书 |
|
 |
机械系统控制软件:实时系统面向对象设计(影印版) |
 |
|
 |
机械系统控制软件:实时系统面向对象设计(影印版) |
 |

基本信息·出版社:清华大学出版社
·ISBN:7302082332
·条形码:9787302082330
·版本:第1版
·装帧:平装
内容简介 为复杂机械设备构建实时软件的完全指南!
机械系统的性能日益成为其控制软件的功能,因此,在系统设计和实现的每一个阶段,都必须考虑控制软件的计算能力及其所受到的限制。本书全面阐述了如何为今天日益复杂的机械设备构建实时控制软件。
本书介绍了实时软件开发的每一个步骤:性能说明书、设计文档、模拟、实验室和生产原型设计、生产系统的开发与维护等;讨论了在任何一种机电环境下,如何最大限度地保持实时软件的可靠性和一致性。本书涵盖以下主题:
·为机电系统构建实时软件所面临的挑战
·如何有效实现实现任务内及任务间通信
·状态转换逻辑计时、任务调度、多任务以及基于中断的调度
·基于图形和字符的操作界面
·直接实现系统控制软件,包括MATLAB模拟
·分布式控制:多处理器体系结构、TCP/IP与UDP、应用层编程
·详细的案例分析同时采用Java和C++语言
本书中的详细实例和案例分析同时采用Java和C++语言,所涉及的应用领域非常广泛,如皮带传动、炉温控制以及成型加工等。
作者简介 D.M.Auslander,加州大学伯克利分校机械工程系的教授,当前研究兴趣包括自动控制系统设计、微机系统生物工程、动态系统的建模与模拟以及过程控制。Auslander教授是Mechatronics:Mechanical System Interfacing和Real-Time Software for Implementation of Feedback Control两书的合著书。
目录 1 MECHATRONICS
1.1 A History of Increasing Complesity
1.2 Mechatronic System Organization
1.3 Amplifiers and Isolation
1.4 Scope:The Unit Machine
1.5 Control
1.6 Real-Time Software
1.7 Nasty Software Properties
1.8 Engineering Design and Computational Performance
1.9 Control System Organization
1.10 Software Portability
1.11 Operator Interface
1.12 Multicomputer Systems:Communication
1.13 The Design and Implementation Process
2 TASKS
2.1 Example:Task Selection in a Process System
2.2 Tasks and the Control Hierarchy
2.3 Task Structure Examples
2.4 Simulation
2.5 More Task Structure Examples
3 STATE TRANSITION LOGIC
3.1 States and Transitions
3.2 Transition Logic Diagrams
3.3 Tabular Form for Transition Logic
3.4 Example:Pulse-Width Modulation (PWM)
3.5 Transition Logic for the Process Control Example
3.6 Nonblocking State Code
3.7 State-Related Code
3.8 State Scanning:The Execution Cycle
3.9 Task Concurrency:Universal Real-Time Solution
4 DIRECT REALIZATION OF SYSTEM CONTROL SOFTWARE
4.1 Language
4.2 Time
4.3 Program Format
4.4 Simulation
4.5 Simulation in Matlab
4.6 Intertask Communication
4.7 Real-Time Realization
4.8 Real-Time Realization with Matlab
5 SOFTWARE REALIZATION IN C++
5.1 Simulation in C++
5.2 Templates for Simulation in C++(group-priority)
5.3 PWM Simulation Using C++(group-priority)
5.4 Simulation in C++(with TranRun4)
5.5 Real-Time Realization with C++
6 INTERTASK COMMUNICATION
6.1 Communication Within a Process
6.2 Communication Across Processes
7 TIMING TECHNIQUES ON PC COMPATIBLES
7.1 Calibrated Time
7.2 Free-Running Timer
7.3 Interrupt-Based Timing
8 MULTITASKING:PERFORMANCE IN THE REAL WORLD
8.1 Priority-Based Scheduling--Resource Shifting
8.2 Matlab Template for Minimum-Latency Dispatcher
8.3 Cooperative Multitasking Using C++
8.4 Preemptive Multitasking Modes
8.5 Realization of Interrupt-Based Dispatching
9 A CHARACTER-BASED OPER-ATOR INTERFACE
9.1 Operator Interface Requirements
9.2 Context Sensitive Interfaces
9.3 User Interface Programming Paradigms
9.4 Mechatronics System Operator Interface
9.5 Operator Interface Programming
10 GRAPHICAL OPERATOR INTERFACES
10.1 Graphical Environments
10.2 The Times-2 Problem
10.3 Screen Change
10.4 Heat Exchanger Control in Bridgeview
10.5 Interprocess Communication:DDE
10.6 Putting It All Together
11 DISTRIBUTED CONTROL I:NET BASICS
11.1 Multiprocessor Architectures
11.2 TCP/IP Networking
11.3 Implementation of UDP
11.4 The Application Layer
12 DISTRIBUTED CONTROL II:A MECHATRONICS CONTROL APPLICATION LAYER
12.1 Control System Application Protocol
12.2 Startup of Distributed Control Systems
12.3 Testing the Application Protocol
12.4 Using the Control Application Protocol
12.5 Compiling
13 JAVA FOR CONTROL SYSTEM SOFTWARE
13.1 The Java Language and API
13.2 Preconditions for Real-Time Programming in Java
13.3 Advantages of Java for Control Software Design
13.4 Java and the Task/State Design Method
13.5 The Current State of Real-Time Java
14 PROGRAMMABLE LOGIC CONTROLLERS(PLCs)
14.1 Introduction
14.2 Goals
14.3 PLC Programming
14.4 The Task/State Model
14.5 State Transition Logic for a PLC
14.6 PLC Multitasking
14.7 Modular Design
14.8 Example:Model Railroad Control
14.9 Simulation-Portability
15 ILLUSTRATIVE EXAMPLE:ASSEMBLY SYSTEM
15.1 The Assembly System
15.2 System Simulation
15.3 Development Sequence
15.4 Belt Motion Simulation(Glue00)
15.5 Oven Temperature Simulation(Glue01)
15.6 PID Control of Belt Position and Oven Temperature(Glue02)
15.7 Better Control of Motion(Glue03)
15.8 A Command Structure for Profiled Motion (Glue04)
15.9 Clamps(Glue05)
15.10 Robots(Glue06)
15.11 Cure/Unload(Glue07)
15.12 Making Widgets(Glue08)
16 THE GLUING CELL EXERCISE IN TRANRUN4
16.1 The Gluing System
16.2 Simulation and Prototyping
16.3 The Project Components
16.4 Glue00:Conveyor Simulation
16.5 Glue01:An Oven Simulation
16.6 Glue02:PID Control
16.7 Glue03:The Operator Interface
16.8 Glue04:Motion Profiling
16.9 Glue05:Belt Sequencing
16.10 Glue06:The Glue Application Machine
16.11 Glue07:Transport Task Supervision
16.12 Glue08:The Completed Assembly System
17 THE GLUING CELL EXERCESE IN TRANRUNJ
17.1 Getting Started
17.2 Writing Custom Tasks and States
17.3 Implementing State Transition Logic
17.4 Global Data and Intertask Messaging
17.5 Continuous vs. Intermittent Tasks
17.6 Scheduler Internals
17.7 Execution Profiling
17.8 Intertask Messaging Across Different Processes
17.9 Tips And Tricks
17.10 Additional Information
BIBLIOGRAPHY
INDEX
……