首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 开发语言 > 编程 >

HDU 4741 Save Labman No.004 2013 ACM/ICPC 杭州市网络赛

2013-11-08 
HDU 4741Save Labman No.0042013 ACM/ICPC 杭州网络赛传送门:http://acm.hdu.edu.cn/showproblem.php?pid

HDU 4741 Save Labman No.004 2013 ACM/ICPC 杭州网络赛

传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4741

 

题意:给你两条异面直线,然你求着两条直线的最短距离,并求出这条中垂线与两直线的交点。

需要注意的是,不知道为什么用double就WA了,但是改为long double就AC了。

 

AC代码:

#include <iostream>#include <cstdio>#include <cstring>#include <string>#include <cstdlib>#include <cmath>#include <vector>#include <list>#include <deque>#include <queue>#include <iterator>#include <stack>#include <map>#include <set>#include <algorithm>#include <cctype>using namespace std;typedef __int64 LL;const int N=1100;const int INF=0x3f3f3f3f;const long double PI=acos(-1.0);const long double eps=1e-7;bool zero(long double x){    if(fabs(x)<eps)        return true;    return false;}struct point3D{    long double x,y,z;    point3D(){};    point3D(long double a,long double b,long double c):x(a),y(b),z(c){}    void input()    {        double a,b,c;        scanf("%lf%lf%lf",&a,&b,&c);        x=a,    y=b,    z=c;    }    friend point3D operator -(const point3D &a,const point3D &b)    {        return point3D(a.x-b.x,a.y-b.y,a.z-b.z);    }    friend point3D operator +(const point3D &a,const point3D &b)    {        return point3D(a.x+b.x,a.y+b.y,a.z+b.z);    }};struct line{    long double a,b,c,d;    point3D u,v;}l[33];long double vlen(point3D a)//向量长度{    return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);}long double dis(point3D a,point3D b)//两点距离{    long double x=a.x-b.x;    long double y=a.y-b.y;    long double z=a.z-b.z;    return sqrt(x*x+y*y+z*z);}point3D xmult(point3D u,point3D v)//叉积,法向量{    point3D ret;    ret.x=u.y*v.z-v.y*u.z;    ret.y=u.z*v.x-u.x*v.z;    ret.z=u.x*v.y-u.y*v.x;    return ret;}long double dmult(point3D u,point3D v)//点积{    return u.x*v.x+u.y*v.y+u.z*v.z;}point3D get_faline(point3D a,point3D b,point3D c)//平面的法向量{    return xmult(b-a,c-a);}bool dian_inline(point3D a,point3D b,point3D c)//判断三点共线{    return vlen(xmult(b-a,c-a))<eps;}bool dian_inmian(point3D a,point3D b,point3D c,point3D d)//四点公面{    return zero(dmult(get_faline(a,b,c),d-a));}long double xian_xian(line l1,line l2)//直线到直线的距离{    point3D n=xmult(l1.u-l1.v,l2.u-l2.v);//法向量    return fabs(dmult(l1.u-l2.u,n))/vlen(n);}point3D a,b,c,d;long double F1(point3D a,point3D b){    return ((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y)+(b.z-a.z)*(b.z-a.z));}long double F2(){    return ((b.x-a.x)*(d.x-c.x)+(b.y-a.y)*(d.y-c.y)+(b.z-a.z)*(d.z-c.z));}long double F3ab(point3D a,point3D b){    return ((b.x-a.x)*(c.x-a.x)+(b.y-a.y)*(c.y-a.y)+(b.z-a.z)*(c.z-a.z));}long double F3cd(point3D c,point3D d){    return ((d.x-c.x)*(c.x-a.x)+(d.y-c.y)*(c.y-a.y)+(d.z-c.z)*(c.z-a.z));}int main(){    int T;    cin>>T;    while(T--)    {        a.input();  b.input();  c.input();  d.input();        line l1,l2;        l1.u=a;   l1.v=b;        l2.u=c;   l2.v=d;        printf("%.6lf\n",(double)xian_xian(l1,l2));        long double x[6];        long double xh1,xh2;        xh1=F3ab(a,b)*F1(c,d)-F3cd(c,d)*F2();        xh2=F1(a,b)*F1(c,d)-F2()*F2();        x[0]=(b.x-a.x)*xh1/xh2+a.x;        x[1]=(b.y-a.y)*xh1/xh2+a.y;        x[2]=(b.z-a.z)*xh1/xh2+a.z;        long double xx1,xx2,xxx;        xx1=F3cd(c,d)*F1(a,b)-F3ab(a,b)*F2();        xx2=F2()*F2()-F1(a,b)*F1(c,d);        xxx=xx1/xx2;        x[3]=(d.x-c.x)*xxx+c.x;        x[4]=(d.y-c.y)*xxx+c.y;        x[5]=(d.z-c.z)*xxx+c.z;        for(int i=0;i<5;i++)            printf("%.6lf ",(double)x[i]);        printf("%.6lf\n",(double)x[5]);    }    return 0;}


 

热点排行