POJ 1679 The Unique MST (Kruskal判断最小生成树是否唯一)
The Unique MSTTime Limit:?1000MS?Memory Limit:?10000KTotal Submissions:?17062?Accepted:?5920
Description
Given a connected undirected graph, tell if its minimum spanning tree is unique.?Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.Output
For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.Sample Input
Sample OutputSourcePOJ Monthly--2004.06.27 srbga@POJ?题意:给一个图,问其最小生成树是否惟一。
思路:用Kruskal 算出最小生成树的值,并记录每一条边,然后枚举去掉这些边 看其是否也能构成最小生成树且值相同。注意 在删边后,可能图构不成一棵树,得判断一下?#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int VM=120;const int EM=10010;struct Edge{ int u,v,cap;}edge[EM<<1];int n,m,flag;int ans,father[VM];void makeSet(){ for(int i=1;i<=n;i++) father[i]=i;}int findSet(int x){ if(x!=father[x]){ father[x]=findSet(father[x]); } return father[x];}int cmp(Edge a,Edge b){ return a.cap<b.cap;}void Kruskal(){ makeSet(); sort(edge,edge+m,cmp); int path[EM],cnt=0; ans=0; for(int i=0;i<m;i++){ int u=findSet(edge[i].u); int v=findSet(edge[i].v); if(u!=v){ father[v]=u; path[cnt++]=i; //记录路径 ans+=edge[i].cap; } } for(int k=0;k<cnt;k++){ //枚举去掉每一条边 makeSet(); int sum=0,j=0; for(int i=0;i<m;i++){ if(i==path[k]) continue; int u=findSet(edge[i].u); int v=findSet(edge[i].v); if(u!=v){ father[v]=u; sum+=edge[i].cap; j++; } } if(j==n-1 && sum==ans){ //判断是否能构成树 且 是否与最小生成树相等 flag=0; return ; } }}int main(){ //freopen("input.txt","r",stdin); int t; scanf("%d",&t); while(t--){ scanf("%d%d",&n,&m); for(int i=0;i<m;i++) scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].cap); flag=1; Kruskal(); if(flag) printf("%d\n",ans); else printf("Not Unique!\n"); } return 0;}?