使用 IBM 性能分析工具解决生产环境中的性能问题
个人感觉 HeapAnalyzer 给出的分析结果可读性不强,而且不能准确定位问题,从分析结果看大致是因为加载的对象过多,但是是哪个模块导致的问题就跟踪不到了。笔者开始寻找 HeapAnalyzer 分析结果相关的资料,试图从这个可读性不强的结果中找到蛛丝马迹,可是许久没有进展,再一次陷入了困境。
?
在多次研究 heapdump 文件无果的情况下,笔者开始逐渐将注意力转移到 javacore 文件上,虽然它比较小,说不定内藏玄机呢。通过多方搜寻,找到了 IBM Thread and Monitor Dump Analyzer for Java(以下简称 jca)—— A tool that allows identification of hangs, deadlocks, resource contention, and bottlenecks in Java threads。通过它自身的这段描述来看,这正是笔者所需要的好工具。
?
这个工具的使用和 HeapAnalyzer 一样,非常容易,同样提供了详细的 readme 文档,这里也简单举例如下:
?
笔者直接在生产环境下直接通过它对产生的 javacore 文件进行分析,令人惊喜的是,其分析结果非常明了,笔者心头的疑云在对结果进行进一步分析核实后也渐渐散去。
图 3. jca 对 javacore.20090602.134015.430370.txt 的分析结果 —— 第一部分
从图中,我们可以清楚地看到引发错误的原因 —— The failure was caused because the class loader limit was exceeded。同时我们还能看出当前生产环境使用的 JRE 版本是:J2RE 5.0 IBM J9 2.3 AIX ppc-32 build j9vmap3223-20070201 ,这个 SR4 的版本有个问题,我们可以从分析结果图的第二部分的 NOTE 小节清楚地看到:
图 4. jca 对 javacore.20090602.134015.430370.txt 的分析结果 —— 第二部分
NOTE: Only for Java 5.0 Service Refresh 4 (build date:February 1st, 2007) and older. When you use delegated class loaders, the JVM can create a large number of ClassLoader objects. On IBM Java 5.0 Service Refresh 4 and older, the number of class loaders that are permitted is limited to 8192 by default and an OutOfMemoryError exception is thrown when this limit is exceeded. Use the -Xmxcl parameter to increase the number of class loaders allowed to avoid this problem, for example to 25000, by setting -Xmxcl25000, until the problem is resolved.
?
原来,OOM 竟然是因为这个原因产生的。那么到底是哪里加载的对象超过了这个 8192 的限制呢?接下来笔者结合分析结果和应用系统 log 进行了进一步的分析,更加验证了 JCA 分析结果的正确性。
?
在分析结果中可以看到 Current Thread ,就是对应引起 OOM 的应用服务器的线程,使用该线程的名称作为关键字在我们的 log 里进行搜索,迅速定位到了业务点——这是一个定时的调度,其功能是按固定时间间隔以 DBLink 的方式从外部应用的数据库系统中抽取数据,通过应用层逻辑转换后保存到内网数据库系统中。应用层的逻辑是对所有的业务数据进行循环,对每条业务数据进行到 POJO 的一一对照转换,这意味这一条业务数据需要 10 几个 POJO 进行组合对照,也就是说,如果外网在指定的时间间隔内数据量稍大,就会加载大量的对象,使 JVM 的 class loaders 瞬间超过 8192 的限制,而产生 OOM 的错误,从而使内存不断被消耗,直至宕机。
?
jca 还提供了对垃圾回收和线程状态的详细分析数据,可以参考如下两图:
图 5. jca 对垃圾回收状态的分析数据
图 6. jca 对垃圾线程状态的分析数据
问题核实后,如何进行解决呢?分析结果中也给出了相应的建议,从图 4 的 Recommended 小节我们可以看到:
?
Recommended -Xmxcl setting (only for IBM Java 5.0, up to and including Service Refresh 4 (build date:February 1st ,2007)) : 10,649 or greater。
?
为了考虑到对既有旧系统不产生影响,我们没有对 JRE 进行升级,而是采用了分析结果给出的建议,在应用服务器启动后设置 -Xmxcl 参数为 25000,为验证我们的修改是不是成功解决掉了 OOM 宕机的问题,笔者取消了对应用服务器的自动重启调度,通过一段时间的监控发现,系统运行良好,一直没有再出现 OOM 而宕机的问题,问题得以最终解决。
?
总结
?
系统上线前要做好充分的准备工作,这一点很重要,上线计划可不是拍拍脑门就能想出来的,需要很多项目成员的参与。
大部分具有并发需求的应用系统上线前,都要经过开发团队的压力测试,这样在试运行阶段才能心里有底。本项目案例中,由于工期过于紧张,加之其他因素,导致压力测试不够充分,虽然 OOM 的问题并不是因为并发数过多产生,但是这一环节是不可忽视的。
攻坚团队一个拥有高度的执行力的团队一定是一个责任分明的团队。在应对突发、严重、紧急情况时,要有专门的攻坚团队来解决这类问题,这个团队应该包括项目组的核心开发人员,有较强的动手能力和研究能力,能够变通解决问题,思路开阔。他们的作用是至关重要的,往往可能决定项目的成败。
信心很重要每一次攻坚内存泄露的问题都是一次探险之旅,需要有清醒的意识和头脑,更要凝结你的意志和信心,因为这是一个艰苦的过程。本文案例由发生至解决有半年之久,当笔者转向分析 javacore 文件后,迅速定位了问题,终于柳暗花明,这种喜悦是难以言表的。
纸上得来终觉浅, 绝知此事要躬行。这一条不多说了,有所行,才有所得。