深度优先搜索找迷宫的出路
现在我们用堆栈解决一个有意思的问题,定义一个二维数组:
int maze[5][5] = {0, 1, 0, 0, 0,0, 1, 0, 1, 0,0, 0, 0, 0, 0,0, 1, 1, 1, 0,0, 0, 0, 1, 0,};
它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的路线。程序如下:
例 12.3. 用深度优先搜索解迷宫问题
#include <stdio.h>#define MAX_ROW 5#define MAX_COL 5struct point { int row, col; } stack[512];int top = 0;void push(struct point p){stack[top++] = p;}struct point pop(void){return stack[--top];}int is_empty(void){return top == 0;}int maze[MAX_ROW][MAX_COL] = {0, 1, 0, 0, 0,0, 1, 0, 1, 0,0, 0, 0, 0, 0,0, 1, 1, 1, 0,0, 0, 0, 1, 0,};void print_maze(void){int i, j;for (i = 0; i < MAX_ROW; i++) {for (j = 0; j < MAX_COL; j++)printf("%d ", maze[i][j]);putchar('\n');}printf("*********\n");}struct point predecessor[MAX_ROW][MAX_COL] = {{{-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}},{{-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}},{{-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}},{{-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}},{{-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}, {-1,-1}},};void visit(int row, int col, struct point pre){struct point visit_point = { row, col };maze[row][col] = 2;predecessor[row][col] = pre;push(visit_point);}int main(void){struct point p = { 0, 0 };maze[p.row][p.col] = 2;push(p);while (!is_empty()) {p = pop();if (p.row == MAX_ROW - 1 /* goal */ && p.col == MAX_COL - 1)break;if (p.col+1 < MAX_COL /* right */ && maze[p.row][p.col+1] == 0)visit(p.row, p.col+1, p);if (p.row+1 < MAX_ROW /* down */ && maze[p.row+1][p.col] == 0)visit(p.row+1, p.col, p);if (p.col-1 >= 0 /* left */ && maze[p.row][p.col-1] == 0)visit(p.row, p.col-1, p);if (p.row-1 >= 0 /* up */ && maze[p.row-1][p.col] == 0)visit(p.row-1, p.col, p);print_maze();}if (p.row == MAX_ROW - 1 && p.col == MAX_COL - 1) {printf("(%d, %d)\n", p.row, p.col);while (predecessor[p.row][p.col].row != -1) {p = predecessor[p.row][p.col];printf("(%d, %d)\n", p.row, p.col);}} elseprintf("No path!\n");return 0;}运行结果如下:
2 1 0 0 0 2 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 *********2 1 0 0 0 2 1 0 1 0 2 0 0 0 0 0 1 1 1 0 0 0 0 1 0 *********2 1 0 0 0 2 1 0 1 0 2 2 0 0 0 2 1 1 1 0 0 0 0 1 0 *********2 1 0 0 0 2 1 0 1 0 2 2 0 0 0 2 1 1 1 0 2 0 0 1 0 *********2 1 0 0 0 2 1 0 1 0 2 2 0 0 0 2 1 1 1 0 2 2 0 1 0 *********2 1 0 0 0 2 1 0 1 0 2 2 0 0 0 2 1 1 1 0 2 2 2 1 0 *********2 1 0 0 0 2 1 0 1 0 2 2 0 0 0 2 1 1 1 0 2 2 2 1 0 *********2 1 0 0 0 2 1 0 1 0 2 2 2 0 0 2 1 1 1 0 2 2 2 1 0 *********2 1 0 0 0 2 1 2 1 0 2 2 2 2 0 2 1 1 1 0 2 2 2 1 0 *********2 1 2 0 0 2 1 2 1 0 2 2 2 2 0 2 1 1 1 0 2 2 2 1 0 *********2 1 2 2 0 2 1 2 1 0 2 2 2 2 0 2 1 1 1 0 2 2 2 1 0 *********2 1 2 2 2 2 1 2 1 0 2 2 2 2 0 2 1 1 1 0 2 2 2 1 0 *********2 1 2 2 2 2 1 2 1 2 2 2 2 2 0 2 1 1 1 0 2 2 2 1 0 *********2 1 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 1 1 0 2 2 2 1 0 *********2 1 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 0 *********2 1 2 2 2 2 1 2 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 2 *********(4, 4)(3, 4)(2, 4)(1, 4)(0, 4)(0, 3)(0, 2)(1, 2)(2, 2)(2, 1)(2, 0)(1, 0)(0, 0)
这次堆栈里的元素是结构体类型的,用来表示迷宫中一个点的x和y坐标。我们用一个新的数据结构保存走迷宫的路线,每个走过的点都有一个前趋(Predecessor)点,表示是从哪儿走到当前点的,比如 我在 图 12.2. 深度优先搜索 图中各点的编号表示探索顺序,堆栈中保存的应该是坐标,我在画图时为了直观就把各点的编号写在堆栈里了。可见正是堆栈后进先出的性质使这个算法具有了深度优先的特点。如果在探索问题的解时走进了死胡同,则需要退回来从另一条路继续探索,这种思想称为回溯(Backtrack),一个典型的例子是很多编程书上都会讲的八皇后问题。 最后我们打印终点的坐标并通过 不能随机访问一条路线上的任意点,只能通过一个点找到另一个点,通过另一个点再找第三个点,因此只能顺序访问。 每个点只知道它的前趋是谁,而不知道它的后继(Successor)是谁,所以只能反向顺序访问。 可见,有什么样的数据结构就决定了可以用什么样的算法。那为什么不再建一个将起点标记为已走过并压栈;while (栈非空) {从栈顶弹出一个点p;if (p这个点是终点)break;否则沿右、下、左、上四个方向探索相邻的点if (和p相邻的点有路可走,并且还没走过)将相邻的点标记为已走过并压栈,它的前趋就是p点;}if (p点是终点) {打印p点的坐标;while (p点有前趋) {p点 = p点的前趋;打印p点的坐标;}} else没有路线可以到达终点;
successor
数组来保存每个点的后继呢?从DFS算法的过程可以看出,虽然每个点的前趋只有一个,后继却不止一个,如果我们为每个点只保存一个后继,则无法保证这个后继指向正确的路线。由此可见,有什么样的算法就决定了可以用什么样的数据结构。设计算法和设计数据结构这两件工作是紧密联系的。