首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 其他教程 > 其他相关 >

1.IND 1.INF nan inf 1.QNAN SNaN 有关问题的解决

2013-03-17 
1.#IND 1.#INF nan inf 1.#QNAN SNaN 问题的解决内容整理自网络进行浮点数编程时,如果没有注意,常常会出现

1.#IND 1.#INF nan inf 1.#QNAN SNaN 问题的解决

内容整理自网络

进行浮点数编程时,如果没有注意,常常会出现输出类似 1.#IND, 1.#INF 或者 nan, inf 之类奇怪的输出。这通常隐含了浮点数操作的异常。

特殊浮点数的含义
1.#INF / inf:这个值表示“无穷大 (infinity 的缩写)”,即超出了计算机可以表示的浮点数的最大范围(或者说超过了 double 类型的最大值)。例如,当用 0 除一个整数时便会得到一个1.#INF / inf值;相应的,如果用 0 除一个负整数也会得到 -1.#INF / -inf 值。

-1.#IND / nan:这个的情况更复杂,一般来说,它们来自于任何未定义结果(非法)的浮点数运算。"IND"是 indeterminate 的缩写,而"nan"是 not a number 的缩写。产生这个值的常见例子有:对负数开平方,对负数取对数,0.0/0.0,0.0*∞, ∞/∞ 等。

简而言之,如果遇到 1.#INF / inf,就检查是否发生了运算结果溢出除零,而遇到 1.#IND / nan,就检查是否发生了非法的运算。

特殊浮点数的判断
很多 C 库都提供了一组函数用来判断一个浮点数是否是无穷大或 NaN。int _isnan(double x) 函数用来判断一个浮点数是否是 NaN,而 int _finite(double x) 用以判断一个浮点数是否是无穷大。

你可能已经注意到了,上面两个函数都是以下划线开头的,因此在可移植性上可能是存在问题的,那么如何实现一个通用的判断版本呢?首先,对于 Nan,可以用下面的代码实现:

bool IsNumber(double x)
{
    // 这里的比较操作看上去总是会得到 true
    // 但有趣的是对于 IEEE 754 浮点数 NaN 来说总会得到 false!
    return (x == x);
}
而下面的代码可以判断一个浮点数是否是有限的(finite, 即既不是 NaN 又不是 infinite):

bool IsFiniteNumber(double x)
{
    return (x <= DBL_MAX && x >= -DBL_MAX);
}
其中,DBL_MAX 是 <float.h> 中预定义的常量。

把上面两个函数结合起来,还可以实现一个浮点数是否是 Inf 的判断。

转自:http://live.aulddays.com/tech/10/double-float-ind-nan-inf/


此处的1.#QNAN是一个打印呈现,QNAN是指Quiet Not a Number,类似的浮点错误还有SNaN(Signaling Not a Number),通常如0.0/0.0、给负数开平方根等溢出或无效运算就会产生一个NAN结果的表示值,NaN及两种浮点错误的说明如下:
The value NaN (Not a Number) is used to represent a value that does not represent a real number. NaN’s are represented by a bit pattern with an exponent of all 1s and a non-zero fraction. There are two categories of NaN: QNaN (Quiet NaN) and SNaN (Signalling NaN).
A QNaN is a NaN with the most significant fraction bit set. QNaN’s propagate freely through most arithmetic operations. These values pop out of an operation when the result is not mathematically defined.
An SNaN is a NaN with the most significant fraction bit clear. It is used to signal an exception when used in operations. SNaN’s can be handy to assign to uninitialized variables to trap premature usage.
Semantically, QNaN’s denote indeterminate operations, while SNaN’s denote invalid operations. If a return value is a QNaN, it means that it is impossible to determine the result of the operation, a SNaN means that the operation is invalid

IEEE floating-point exceptions in C++

This page will answer the following questions.

    My program just printed out 1.#IND or 1.#INF (on Windows) or nan or inf (on Linux). What happened?How can I tell if a number is really a number and not a NaN or an infinity?How can I find out more details at runtime about kinds of NaNs and infinities?Do you have any sample code to show how this works?Where can I learn more?

    These questions have to do with floating point exceptions. If you get some strange non-numeric output where you're expecting a number, you've either exceeded the finite limits of floating point arithmetic or you've asked for some result that is undefined. To keep things simple, I'll stick to working with the double floating point type. Similar remarks hold for float types.

    Debugging 1.#IND, 1.#INF, nan, and inf

    If your operation would generate a larger positive number than could be stored in adouble, the operation will return 1.#INF on Windows or inf on Linux. Similarly your code will return -1.#INF or -inf if the result would be a negative number too large to store in a double. Dividing a positive number by zero produces a positive infinity and dividing a negative number by zero produces a negative infinity. Example code at the end of this page will demonstrate some operations that produce infinities.

    Some operations don't make mathematical sense, such as taking the square root of a negative number. (Yes, this operation makes sense in the context of complex numbers, but a double represents a real number and so there is no double to represent the result.) The same is true for logarithms of negative numbers. Both sqrt(-1.0) and log(-1.0)would return a NaN, the generic term for a "number" that is "not a number". Windows displays a NaN as  -1.#IND ("IND" for "indeterminate") while Linux displays nan. Other operations that would return a NaN include 0/0, 0*∞, and ∞/∞. See the sample code below for examples.

    In short, if you get 1.#INF or inf, look for overflow or division by zero. If you get 1.#INDor nan, look for illegal operations. Maybe you simply have a bug. If it's more subtle and you have something that is difficult to compute, see Avoiding Overflow, Underflow, and Loss of Precision. That article gives tricks for computing results that have intermediate steps overflow if computed directly.

    Testing for NaNs and infinities

    Next suppose you want to test whether a number is an infinity or a NaN. For example, you may want to write to a log file print a debug message when a numerical result goes bad, or you may want to execute some sort of alternate logic in your code. There are simple, portable ways to get summary information and more complicated, less portable ways to get more information.

    First, the simple solution. If you want to test whether a double variable contains a valid number, you can check whether x == x. This looks like it should always be true, but it's not! Ordinary numbers always equal themselves, but NaNs do not. I've used this trick on Windows, Linux, and Mac OSX. If you ever use this trick, put big bold comments around your code so that some well-meaning person won't come behind you and delete what he or she things is useless code. Better yet, put the test in a well-documented function in a library that has controlled access. The following function will test whetherx is a (possibly infinite) number.

    • Home
    • Blog
    • Consulting
    • Contact

      jdc

热点排行