首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 软件管理 > 软件开发 >

MOD 之"Hello World"

2013-03-01 
MOD 之Hello World首先声明,MOD不是取模函数!MOD是字典学习和sparse coding的一种方法… 最近在看KSVD,其

MOD 之"Hello World"

首先声明,MOD不是取模函数!MOD是字典学习和sparse coding的一种方法… 最近在看KSVD,其简化版就是MOD(method of directions),这么说吧,KSVD和MOD的优化目标函数是相同的,MOD之所以可以称作KSVD的简化版是因为KSVD在MOD的基础上做了顺序更新列的优化。关于KSVD和MOD的理论知识请见下面我给出的一页note和referenc中的paper。本文主要给出其基本思想及我的代码,已经过测试,如有bug欢迎提出。


Reference

<<From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images>>, Page 68~70



KSVD & MOD's principle & objective function 

Principle:

简单来说,其优化就是一个OMP(orthogonal matching pursuit)与Regression的迭代过程,因此代码包括一个OMP.m, regression.m.


Objective Function & the variation from MOD to KSVD:

MOD 之"Hello World"



Code

CODE1. MOD

运行Main(Main中通过MOD)学习字典和稀疏表示,MOD迭代调用Regression学习字典,调用和OMP获得sparse representation.


Main.m

function [Dictionary,output] = KSVD(...    Data,... % an nXN matrix that contins N signals (Y), each of dimension n.    param)% =========================================================================%                          K-SVD algorithm% =========================================================================% The K-SVD algorithm finds a dictionary for linear representation of% signals. Given a set of signals, it searches for the best dictionary that% can sparsely represent each signal. Detailed discussion on the algorithm% and possible applications can be found in "The K-SVD: An Algorithm for % Designing of Overcomplete Dictionaries for Sparse Representation", written% by M. Aharon, M. Elad, and A.M. Bruckstein and appeared in the IEEE Trans. % On Signal Processing, Vol. 54, no. 11, pp. 4311-4322, November 2006. % =========================================================================% INPUT ARGUMENTS:% Data                         an nXN matrix that contins N signals (Y), each of dimension n. % param                        structure that includes all required%                                 parameters for the K-SVD execution.%                                 Required fields are:%    K, ...                    the number of dictionary elements to train%    numIteration,...          number of iterations to perform.%    errorFlag...              if =0, a fix number of coefficients is%                                 used for representation of each signal. If so, param.L must be%                                 specified as the number of representing atom. if =1, arbitrary number%                                 of atoms represent each signal, until a specific representation error%                                 is reached. If so, param.errorGoal must be specified as the allowed%                                 error.%    preserveDCAtom...         if =1 then the first atom in the dictionary%                                 is set to be constant, and does not ever change. This%                                 might be useful for working with natural%                                 images (in this case, only param.K-1%                                 atoms are trained).%    (optional, see errorFlag) L,...                 % maximum coefficients to use in OMP coefficient calculations.%    (optional, see errorFlag) errorGoal, ...        % allowed representation error in representing each signal.%    InitializationMethod,...  mehtod to initialize the dictionary, can%                                 be one of the following arguments: %                                 * 'DataElements' (initialization by the signals themselves), or: %                                 * 'GivenMatrix' (initialization by a given matrix param.initialDictionary).%    (optional, see InitializationMethod) initialDictionary,...      % if the initialization method %                                 is 'GivenMatrix', this is the matrix that will be used.%    (optional) TrueDictionary, ...        % if specified, in each%                                 iteration the difference between this dictionary and the trained one%                                 is measured and displayed.%    displayProgress, ...      if =1 progress information is displyed. If param.errorFlag==0, %                                 the average repersentation error (RMSE) is displayed, while if %                                 param.errorFlag==1, the average number of required coefficients for %                                 representation of each signal is displayed.% =========================================================================% OUTPUT ARGUMENTS:%  Dictionary                  The extracted dictionary of size nX(param.K).%  output                      Struct that contains information about the current run. It may include the following fields:%    CoefMatrix                  The final coefficients matrix (it should hold that Data equals approximately Dictionary*output.CoefMatrix.%    ratio                       If the true dictionary was defined (in%                                synthetic experiments), this parameter holds a vector of length%                                param.numIteration that includes the detection ratios in each%                                iteration).%    totalerr                    The total representation error after each%                                iteration (defined only if%                                param.displayProgress=1 and%                                param.errorFlag = 0)%    numCoef                     A vector of length param.numIteration that%                                include the average number of coefficients required for representation%                                of each signal (in each iteration) (defined only if%                                param.displayProgress=1 and%                                param.errorFlag = 1)% =========================================================================if (~isfield(param,'displayProgress'))    param.displayProgress = 0;endtotalerr(1) = 99999;if (isfield(param,'errorFlag')==0)    param.errorFlag = 0;endif (isfield(param,'TrueDictionary'))    displayErrorWithTrueDictionary = 1;    ErrorBetweenDictionaries = zeros(param.numIteration+1,1);    ratio = zeros(param.numIteration+1,1);else    displayErrorWithTrueDictionary = 0;ratio = 0;endif (param.preserveDCAtom>0)    FixedDictionaryElement(1:size(Data,1),1) = 1/sqrt(size(Data,1));else    FixedDictionaryElement = [];end% coefficient calculation method is OMP with fixed number of coefficientsif (size(Data,2) < param.K)    disp('Size of data is smaller than the dictionary size. Trivial solution...');    Dictionary = Data(:,1:size(Data,2));    return;elseif (strcmp(param.InitializationMethod,'DataElements'))    Dictionary(:,1:param.K-param.preserveDCAtom) = Data(:,1:param.K-param.preserveDCAtom);elseif (strcmp(param.InitializationMethod,'GivenMatrix'))    Dictionary(:,1:param.K-param.preserveDCAtom) = param.initialDictionary(:,1:param.K-param.preserveDCAtom);end% reduce the components in Dictionary that are spanned by the fixed% elementsif (param.preserveDCAtom)    tmpMat = FixedDictionaryElement \ Dictionary;    Dictionary = Dictionary - FixedDictionaryElement*tmpMat;end%normalize the dictionary.Dictionary = Dictionary*diag(1./sqrt(sum(Dictionary.*Dictionary)));Dictionary = Dictionary.*repmat(sign(Dictionary(1,:)),size(Dictionary,1),1); % multiply in the sign of the first element.totalErr = zeros(1,param.numIteration);% the K-SVD algorithm starts here.for iterNum = 1:param.numIteration    % find the coefficients    if (param.errorFlag==0)        %CoefMatrix = mexOMPIterative2(Data, [FixedDictionaryElement,Dictionary],param.L);        CoefMatrix = OMP([FixedDictionaryElement,Dictionary],Data, param.L);    else         %CoefMatrix = mexOMPerrIterative(Data, [FixedDictionaryElement,Dictionary],param.errorGoal);        CoefMatrix = OMPerr([FixedDictionaryElement,Dictionary],Data, param.errorGoal);        param.L = 1;    end        replacedVectorCounter = 0;rPerm = randperm(size(Dictionary,2));    for j = rPerm        [betterDictionaryElement,CoefMatrix,addedNewVector] = I_findBetterDictionaryElement(Data,...            [FixedDictionaryElement,Dictionary],j+size(FixedDictionaryElement,2),...            CoefMatrix ,param.L);        Dictionary(:,j) = betterDictionaryElement;        if (param.preserveDCAtom)            tmpCoef = FixedDictionaryElement\betterDictionaryElement;            Dictionary(:,j) = betterDictionaryElement - FixedDictionaryElement*tmpCoef;            Dictionary(:,j) = Dictionary(:,j)./sqrt(Dictionary(:,j)'*Dictionary(:,j));        end        replacedVectorCounter = replacedVectorCounter+addedNewVector;    end    if (iterNum>1 & param.displayProgress)        if (param.errorFlag==0)            output.totalerr(iterNum-1) = sqrt(sum(sum((Data-[FixedDictionaryElement,Dictionary]*CoefMatrix).^2))/prod(size(Data)));            disp(['Iteration   ',num2str(iterNum),'   Total error is: ',num2str(output.totalerr(iterNum-1))]);        else            output.numCoef(iterNum-1) = length(find(CoefMatrix))/size(Data,2);            disp(['Iteration   ',num2str(iterNum),'   Average number of coefficients: ',num2str(output.numCoef(iterNum-1))]);        end    end    if (displayErrorWithTrueDictionary )         [ratio(iterNum+1),ErrorBetweenDictionaries(iterNum+1)] = I_findDistanseBetweenDictionaries(param.TrueDictionary,Dictionary);        disp(strcat(['Iteration  ', num2str(iterNum),' ratio of restored elements: ',num2str(ratio(iterNum+1))]));        output.ratio = ratio;    end    Dictionary = I_clearDictionary(Dictionary,CoefMatrix(size(FixedDictionaryElement,2)+1:end,:),Data);        if (isfield(param,'waitBarHandle'))        waitbar(iterNum/param.counterForWaitBar);    endendoutput.CoefMatrix = CoefMatrix;Dictionary = [FixedDictionaryElement,Dictionary];%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  findBetterDictionaryElement%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [betterDictionaryElement,CoefMatrix,NewVectorAdded] = I_findBetterDictionaryElement(Data,Dictionary,j,CoefMatrix,numCoefUsed)if (length(who('numCoefUsed'))==0)    numCoefUsed = 1;endrelevantDataIndices = find(CoefMatrix(j,:)); % the data indices that uses the j'th dictionary element.if (length(relevantDataIndices)<1) %(length(relevantDataIndices)==0)    ErrorMat = Data-Dictionary*CoefMatrix;    ErrorNormVec = sum(ErrorMat.^2);    [d,i] = max(ErrorNormVec);    betterDictionaryElement = Data(:,i);%ErrorMat(:,i); %    betterDictionaryElement = betterDictionaryElement./sqrt(betterDictionaryElement'*betterDictionaryElement);    betterDictionaryElement = betterDictionaryElement.*sign(betterDictionaryElement(1));    CoefMatrix(j,:) = 0;    NewVectorAdded = 1;    return;endNewVectorAdded = 0;tmpCoefMatrix = CoefMatrix(:,relevantDataIndices); tmpCoefMatrix(j,:) = 0;% the coeffitients of the element we now improve are not relevant.errors =(Data(:,relevantDataIndices) - Dictionary*tmpCoefMatrix); % vector of errors that we want to minimize with the new element% % the better dictionary element and the values of beta are found using svd.% % This is because we would like to minimize || errors - beta*element ||_F^2. % % that is, to approximate the matrix 'errors' with a one-rank matrix. This% % is done using the largest singular value.[betterDictionaryElement,singularValue,betaVector] = svds(errors,1);CoefMatrix(j,relevantDataIndices) = singularValue*betaVector';% *signOfFirstElem%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  findDistanseBetweenDictionaries%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [ratio,totalDistances] = I_findDistanseBetweenDictionaries(original,new)% first, all the column in oiginal starts with positive values.catchCounter = 0;totalDistances = 0;for i = 1:size(new,2)    new(:,i) = sign(new(1,i))*new(:,i);endfor i = 1:size(original,2)    d = sign(original(1,i))*original(:,i);    distances =sum ( (new-repmat(d,1,size(new,2))).^2);    [minValue,index] = min(distances);    errorOfElement = 1-abs(new(:,index)'*d);    totalDistances = totalDistances+errorOfElement;    catchCounter = catchCounter+(errorOfElement<0.01);endratio = 100*catchCounter/size(original,2);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  I_clearDictionary%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function Dictionary = I_clearDictionary(Dictionary,CoefMatrix,Data)T2 = 0.99;T1 = 3;K=size(Dictionary,2);Er=sum((Data-Dictionary*CoefMatrix).^2,1); % remove identical atomsG=Dictionary'*Dictionary; G = G-diag(diag(G));for jj=1:1:K,    if max(G(jj,:))>T2 | length(find(abs(CoefMatrix(jj,:))>1e-7))<=T1 ,        [val,pos]=max(Er);        Er(pos(1))=0;        Dictionary(:,jj)=Data(:,pos(1))/norm(Data(:,pos(1)));        G=Dictionary'*Dictionary; G = G-diag(diag(G));    end;end;

关于Machine Learning更多的学习资料与相关讨论将继续更新,敬请关注本博客和新浪微博Rachel____Zhang.



2楼datoubo3天前 13:20
请问你用KSVD做什么?
Re: abcjennifer3天前 13:23
回复datoubon学字典和稀疏表示
1楼NUPTboyZHB5天前 19:48
OMP.m 正交匹配追踪,经典压缩感知重建算法之一,代码应该是香港大学沙威写的吧~重建性能一般~~
Re: abcjennifer4天前 10:09
回复NUPTboyZHBn嗯,那个代码的注释reference里就是沙威的一维OMP,本文中我的二维OMP大同小异,再就是字典不固定,且加了residual的判断稍快一点。重建效果和数据也有关系了,如果信号分解成字典乘以稀疏表示的假设不成立,就很难用OMP重建

热点排行