GMM的EM算法实现
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明。本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。
1. GMM模型:
每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:

根据上面的式子,如果我们要从 GMM 的分布中随机地取一个点的话,实际上可以分为两步:首先随机地在这 K个Gaussian Component 之中选一个,每个 Component 被选中的概率实际上就是它的系数 pi(k) ,选中了 Component 之后,再单独地考虑从这个 Component 的分布中选取一个点就可以了──这里已经回到了普通的 Gaussian 分布,转化为了已知的问题。
那么如何用 GMM 来做 clustering 呢?其实很简单,现在我们有了数据,假定它们是由 GMM 生成出来的,那么我们只要根据数据推出 GMM 的概率分布来就可以了,然后 GMM 的 K 个 Component 实际上就对应了 K 个 cluster 了。根据数据来推算概率密度通常被称作 density estimation ,特别地,当我们在已知(或假定)了概率密度函数的形式,而要估计其中的参数的过程被称作“参数估计”。
2. 参数与似然函数:
现在假设我们有 N 个数据点,并假设它们服从某个分布(记作 p(x) ),现在要确定里面的一些参数的值,例如,在 GMM 中,我们就需要确定 影响因子pi(k)、各类均值pMiu(k) 和 各类协方差pSigma(k) 这些参数。 我们的想法是,找到这样一组参数,它所确定的概率分布生成这些给定的数据点的概率最大,而这个概率实际上就等于
,我们把这个乘积称作似然函数 (Likelihood Function)。通常单个点的概率都很小,许多很小的数字相乘起来在计算机里很容易造成浮点数下溢,因此我们通常会对其取对数,把乘积变成加和
,得到 log-likelihood function 。接下来我们只要将这个函数最大化(通常的做法是求导并令导数等于零,然后解方程),亦即找到这样一组参数值,它让似然函数取得最大值,我们就认为这是最合适的参数,这样就完成了参数估计的过程。
下面让我们来看一看 GMM 的 log-likelihood function :

由于在对数函数里面又有加和,我们没法直接用求导解方程的办法直接求得最大值。为了解决这个问题,我们采取之前从 GMM 中随机选点的办法:分成两步,实际上也就类似于K-means 的两步。
3. 算法流程:
1. 估计数据由每个 Component 生成的概率(并不是每个 Component 被选中的概率):对于每个数据
来说,它由第
个 Component 生成的概率为

其中N(xi | μk,Σk)就是后验概率
。
2. 通过极大似然估计可以通过求到令参数=0得到参数pMiu,pSigma的值。具体请见这篇文章第三部分。

其中
,并且
也顺理成章地可以估计为
。
3. 重复迭代前面两步,直到似然函数的值收敛为止。
4. matlab实现GMM聚类代码与解释:
1. gmm.m,最核心的函数,进行模型与参数确定。
function [ Accuracy ] = gmm_accuracy( Data_fea, gnd_label, K )%Calculate the accuracy Clustered by GMM modelpx = gmm(Data_fea,K);[~, cls_ind] = max(px,[],1); %cls_ind = cluster label Accuracy = cal_accuracy(cls_ind, gnd_label); function [acc] = cal_accuracy(gnd,estimate_label) res = bestMap(gnd,estimate_label); acc = length(find(gnd == res))/length(gnd); endend
3. 主函数调用
gmm_acc = gmm_accuracy(fea,gnd,N_classes);
写了本文进行总结后自己很受益,也希望大家可以好好YM下上面pluskid的gmm.m,不光是算法,其中的矩阵处理代码也写的很简洁,很值得学习。
另外看了两份东西非常受益,一个是pluskid大牛的《漫谈 Clustering (3): Gaussian Mixture Model》,一个是JerryLead的EM算法详解,大家有兴趣也可以看一下,写的很好。
关于Machine Learning更多的学习资料与相关讨论将继续更新,敬请关注本博客和新浪微博Sophia_qing。