动态规划求解背包问题
背包问题描述
?
代码以及详细描述:
?
package cn.edu.xmu.acm.dp;/** * 求解背包问题: * 给定 n 个背包,其重量分别为 w1,w2,……,wn, 价值分别为 v1,v2,……,vn * 要放入总承重为 totalWeight 的箱子中, * 求可放入箱子的背包价值总和的最大值。 * * NOTE: 使用动态规划法求解 背包问题 * 设 前 n 个背包,总承重为 j 的最优值为 v[n,j], 最优解背包组成为 b[n]; * 求解最优值: * 1. 若 j < wn, 则 : v[n,j] = v[n-1,j]; * 2. 若 j >= wn, 则:v[n,j] = max{v[n-1,j], vn + v[n-1,j-wn]}。 * * 求解最优背包组成: * 1. 若 v[n,j] > v[n-1,j] 则 背包 n 被选择放入 b[n], * 2. 接着求解前 n-1 个背包放入 j-wn 的总承重中, * 于是应当判断 v[n-1, j-wn] VS v[n-2,j-wn], 决定 背包 n-1 是否被选择。 * 3. 依次逆推,直至总承重为零。 * * 重点: 掌握使用动态规划法求解问题的分析方法和实现思想。 * 分析方法: 问题实例 P(n) 的最优解S(n) 蕴含 问题实例 P(n-1) 的最优解S(n-1); * 在S(n-1)的基础上构造 S(n) * 实现思想: 自底向上的迭代求解 和 基于记忆功能的自顶向下递归 */import java.util.ArrayList;public class KnapsackDP {/** 指定背包 */private Knapsack[] bags;/** 总承重 */private int totalWeight;/** 给定背包数量 */private int n;/** 前 n 个背包,总承重为 totalWeight 的最优值矩阵 */private int[][] bestValues;/** 前 n 个背包,总承重为 totalWeight 的最优值 */private int bestValue;/** 前 n 个背包,总承重为 totalWeight 的最优解的物品组成 */private ArrayList<Knapsack> bestSolution;public KnapsackDP(Knapsack[] bags, int totalWeight) {this.bags = bags;this.totalWeight = totalWeight;this.n = bags.length;if (bestValues == null) {bestValues = new int[n+1][totalWeight+1];}}/** * 求解前 n 个背包、给定总承重为 totalWeight 下的背包问题 * */public void solve() {System.out.println("给定背包:");for(Knapsack b: bags) {System.out.println(b);}System.out.println("给定总承重: " + totalWeight);// 求解最优值for (int j = 0; j <= totalWeight; j++) {for (int i = 0; i <= n; i++) {if (i == 0 || j == 0) {bestValues[i][j] = 0;}else {// 如果第 i 个背包重量大于总承重,则最优解存在于前 i-1 个背包中,// 注意:第 i 个背包是 bags[i-1]if (j < bags[i-1].getWeight()) {bestValues[i][j] = bestValues[i-1][j];}else {// 如果第 i 个背包不大于总承重,则最优解要么是包含第 i 个背包的最优解,// 要么是不包含第 i 个背包的最优解, 取两者最大值,这里采用了分类讨论法// 第 i 个背包的重量 iweight 和价值 ivalueint iweight = bags[i-1].getWeight();int ivalue = bags[i-1].getValue();bestValues[i][j] = Math.max(bestValues[i-1][j], ivalue + bestValues[i-1][j-iweight]);} // else} //else } //for} //for// 求解背包组成if (bestSolution == null) {bestSolution = new ArrayList<Knapsack>();} int tempWeight = totalWeight; for (int i=n; i >= 1; i--) { if (bestValues[i][tempWeight] > bestValues[i-1][tempWeight]) { bestSolution.add(bags[i-1]); // bags[i-1] 表示第 i 个背包 tempWeight -= bags[i-1].getWeight(); } if (tempWeight == 0) { break; } } bestValue = bestValues[n][totalWeight]; }/** * 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值 * 调用条件: 必须先调用 solve 方法 * */public int getBestValue() {return bestValue;}/** * 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值矩阵 * 调用条件: 必须先调用 solve 方法 * */ public int[][] getBestValues() { return bestValues; } /** * 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值矩阵 * 调用条件: 必须先调用 solve 方法 * */ public ArrayList<Knapsack> getBestSolution() { return bestSolution; }}
?package cn.edu.xmu.acm.dp;
public class TestKnapsackDP {public static void main(String[] args) {Knapsack[] bags = new Knapsack[] {new Knapsack(2,13), new Knapsack(1,10),new Knapsack(3,24), new Knapsack(2,15),new Knapsack(4,28), new Knapsack(5,33),new Knapsack(3,20), new Knapsack(1, 8)};int totalWeight = 12;KnapsackDP kp = new KnapsackDP(bags, totalWeight);kp.solve();System.out.println(" -------- 该背包问题实例的解: --------- ");System.out.println("最优值:" + kp.getBestValue());System.out.println("最优解【选取的背包】: ");System.out.println(kp.getBestSolution());System.out.println("最优值矩阵:");int[][] bestValues = kp.getBestValues();for (int i=0; i < bestValues.length; i++) {for (int j=0; j < bestValues[i].length; j++) {System.out.printf("%-5d", bestValues[i][j]);}System.out.println();}}}
?package cn.edu.xmu.acm.dp;
public class Knapsack {/** 背包重量 */private int weight;/** 背包物品价值 */private int value;/*** * 构造器 */public Knapsack(int weight, int value) {this.value = value;this.weight = weight;}public int getWeight() {return weight;}public int getValue() {return value;}public String toString() {return "[weight: " + weight + " " + "value: " + value + "]"; }}
?
?
?参考:0/1背包问题的动态规划法求解 —— Java 实现