蚁群算法、遗传算法、模拟退火算法介绍
?
穷举法
列举所有可能,然后一个个去,得到最优的结果。如图一,需要从A点一直走到G点,才能知道,F是最高的(最优解)。这种算法得到的最优解肯定是最好的,但也是效率最低的。
?
穷举法虽然能得到最好的最优解,但效率是极其低下的。为了能提高效率,可以不要枚举所有的结果,只枚举结果集中的一部分,如果某个解在这部分解中是最优的,那么就把它当成最优解。显然这样有可能不能得到真正的最优解,但效率却比穷举法高很多。
只枚举部分解的方法很多。
?
贪心法
在枚举所有解时,当遇到的解在当前情况下是最优时,就认为它是最优解。如图一,当从A点到B点时,由于B点比A点的解更优,所以会认为B点是最优解。
显然这样的效率很高,但得到的最优解质量也很差。
爬山法
贪心法是只和前面的一个比较,为了提高最优解的质量,可以不仅和前一个解比较,也和后一个解比较,如果比前面和后面的解都优,那么就认为它是最优解。如图一,当到C点时,发现它比前面的B和后面的D点的解都好,所以认为它是最优解。
?
模拟退火算法
?
模拟退火算法(Simulated Annealing,SA)最早由Kirkpatrick等应用于组合优化领域,它是基于Mente-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。?
遗传算法
?
遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,生物在繁衍发展的过程,会通过繁殖,发生基因交叉,基因突变,适应度低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的。
遗传算法初始是一个较差解的解集种群,通过遗传交叉繁殖出下一代的解集种群。在交叉的过程中,有一定的概率发生基因突变。在下一代的解集种群中,通过适者生存的自然选择,淘汰那些较差的解(个体),只让较好的解(个体)繁殖后代,这样产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境。经过许多代的繁殖和自然选择后,就能得到接近于真正最优解的解。
?
可以用精英主义原则来对基本遗传算法进行优化。所谓精英主义原则,就是为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。
?
蚁群算法
出错机制:显然如果蚂蚁都往信息素多的地方移动,会导致局部最优解的问题。可是,总有些具有叛逆精神的蚂蚁,会不往信息素较多的地方移动,从而可以跳出局部最优解,找到全局的最优解。