《算法导论的Java实现》 8 快速排序
Blog地址:
《算法导论的Java实现》 8 快速排序
8 快速排序
8.1 对快速排序的描述
快速排序是基于“分治算法”的。在《1.3.1 分治算法》里面已经介绍过的,就不重复讲了。只要记住基于“分治”的算法,一般都是主函数是个“分治”语句(if…else…),分治块里面一般是调用本身的递归。
伪代码:
QUICKSORT(A, p, r) if p < r then q ← PARTITION(A, p, r) QUICKSORT(A, p, q - 1) QUICKSORT(A, q + 1, r)PARTITION(A, p, r) x ← A[r] i ← p - 1 for j ← p to r - 1 do if A[j] ≤ x then i ← i + 1 exchange A[i] ←→ A[j] exchange A[i + 1] ←→ A[r] return i + 1
import java.util.Comparator;public class QuickSort { public static <T> void quickSort(T[] a, Comparator<? super T> c) { quickSort(a, c, 0, a.length); } public static <T> void quickSort(T[] a, Comparator<? super T> c, int p, int r) { if (p < r) { int q = partition(a, c, p, r); quickSort(a, c, p, q); quickSort(a, c, q + 1, r); } } public static <T> int partition(T[] a, Comparator<? super T> c, int p, int r) { T t = a[r - 1]; int i = p - 1; for (int j = p; j < r - 1; j++) { if (c.compare(a[j], t) <= 0) { i++; T tmp = a[i]; a[i] = a[j]; a[j] = tmp; } } T tmp = a[i + 1]; a[i + 1] = a[r - 1]; a[r - 1] = tmp; return i + 1; } public static void main(String[] args) { Integer[] temp = new Integer[] { 2, 8, 7, 1, 3, 5, 6, 4 }; quickSort(temp, new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o1 - o2; } }); for (int i : temp) { System.out.print(i + " "); } System.out.println(); }}
RANDOMIZED-PARTITION(A, p, r)1 i ← RANDOM(p, r)2 exchange A[r] ? A[i]3 return PARTITION(A, p, r)RANDOMIZED-QUICKSORT(A, p, r)1 if p < r2 then q ← RANDOMIZED-PARTITION(A, p, r)3 RANDOMIZED-QUICKSORT(A, p, q - 1)4 RANDOMIZED-QUICKSORT(A, q + 1, r)
public static <T> void randomizedQuickSort(T[] a, Comparator<? super T> c) { randomizedQuickSort(a, c, 0, a.length); } public static <T> void randomizedQuickSort(T[] a, Comparator<? super T> c, int p, int r) { if (p < r) { int q = randomizedPartition(a, c, p, r); randomizedQuickSort(a, c, p, q); randomizedQuickSort(a, c, q + 1, r); } } public static <T> int randomizedPartition(T[] a, Comparator<? super T> c, int p, int r) { int i = new Random().nextInt(r - p) + p; T tmp = a[i]; a[i] = a[r - 1]; a[r - 1] = tmp; return partition(a, c, p, r); }
public static void main(String[] args) { Integer[] temp = new Integer[] { 2, 8, 7, 1, 3, 5, 6, 4 }; randomizedQuickSort(temp, new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o1 - o2; } }); for (int i : temp) { System.out.print(i + " "); } System.out.println(); }
1 if A[i] > A[j]2 then exchange A[i] ? A[j]3 if i + 1 ≥ j4 then return5 k ← ┕(j - i + 1)/3┙6 STOOGE-SORT(A, i, j - k)7 STOOGE-SORT(A, i + k, j)8 STOOGE-SORT(A, i, j - k)