递归实现背包问题-Java
Java递归实现背包问题:
问题描述:
? ? ? ? ?有N件物品和一个容量为V的背包。第i件物品的费用是c,价值是w。求解将哪些物品装入背包可 使这些物品的费用总和不超过背包容量,且价值总和最大。?
基本思路:
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。?用子问题定义状态:即f[v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则 其状态转移方程便是:f[v]=max{f[v],f[v-c]+w}。
实现代码:
?
* @author Sun Kui */public class Knapsack { public static void main(final String... args) { int[] arr = new int[5]; arr[0] = 11; arr[1] = 8; arr[2] = 7; arr[3] = 5; arr[4] = 3; Knapsack k = new Knapsack(); System.out.println(k.knapsack(arr, 0, 20, 20)); } /** *@param arr all of items in knapsack *@param start the start item to be put into the knapsack *@param left the remaining capacity of knapsack *@param sum capacity of knapsack */ public boolean knapsack(int[] arr, int start, int left, int sum) { if (arr.length == 0) { return false; } // start from the next item in original array if (start == arr.length) { int[] tempArr = new int[arr.length - 1]; for (int i = 0; i < tempArr.length; i++) { tempArr[i] = arr[i + 1]; } return knapsack(tempArr, 0, sum, sum); } else if (arr[start] > left) { return knapsack(arr, start + 1, left, sum); } else if (arr[start] == left) { for (int i = 0; i < start + 1; i++) { // print the answer out System.out.print(arr[i] + "\t"); } System.out.println(); return true; } else { return knapsack(arr, start + 1, left - arr[start], sum); } }}
?
end.
另外一种动态规划解法请见:
http://www.360doc.com/content/07/0518/21/20151_507835.shtml
有空研究。。。