基本信息·出版社:人民邮电出版社 ·页码:564 页 ·出版日期:2009年08月 ·ISBN:711520070X/9787115200709 ·条形码:9787115200709 ·版本:第1版 · ...
| 商家名称 |
信用等级 |
购买信息 |
订购本书 |
|
|
 |
无线通信基础(英文版) |
 |
|
 |
无线通信基础(英文版) |
 |

基本信息·出版社:人民邮电出版社
·页码:564 页
·出版日期:2009年08月
·ISBN:711520070X/9787115200709
·条形码:9787115200709
·版本:第1版
·装帧:平装
·开本:16
·正文语种:英语
·丛书名:图灵原版电子与电气工程系列
·外文书名:Fundamentals of Wireless Communication
内容简介 《无线通信基础(英文版)》介绍无线通信的基本原理,着重强调概念及其在系统中的实现之间的相互影响,涉及的主要问题有MIMO通信、空时编码、机会通信、OFDM和CDMA等,这些概念均利用无线系统的大量实例予以说明。书中还配有大量的习题和图表,可以帮助读者进一步理解材料内容。《无线通信基础(英文版)》适合作为通信工程和电子信息类相关专业高年级本科生和研究生的教材,也可供工程技术人员参考。
作者简介 David Tse,博士,是无线通信领域新一代权威,现任加州大学伯克利分校电气工程与计算机科学系教授,毕业于麻省理工学院。
Pramod Viswanath,博士现任伊利诺伊大学厄巴纳-尚佩恩分校电气与计算机工程系副教授,毕业于加州大学伯克利分校。
媒体推荐 “Tse和viswanath将通信技术的理论发展和实际应用完美结合在本书中。本书必将成为业 界经典教材和权威参考。”
——Robert G.Gallager教授,麻省理工学院
“David Tse和Pranlod viswanath为现代无线通信撰写了一部经典著作!本书覆盖无线系 统设计基础以及无线通信领域最新进展,不仅是高校通信专业理想教材,而且是无线工 程领域工程技术人员的理想指南!”
——Roberto Padovani博士,高通公司CTo
编辑推荐 《无线通信基础(英文版)》由人民邮电出版社出版。《无线通信基础(英文版)》是一部杰出的无线通信著作:作者从一个比较高的层次、用系统的观点总结现有通信技术,并用信息论的观点诠释了近年来比较热门的MlMO、0FDM、机会通信、多用户通信等技术,着重强调概念及其在系统中的实现之间的内在联系和相互影响深刻的工程理解、理论远景和系统实践的完美结合,使《无线通信基础(英文版)》不仅成为普林斯顿大学和加州大学伯克利分校等世界众多高校的教材,也被高通等世界级通信公司用于工程师内部培训《无线通信基础(英文版)》是高等院校通信和电气信息相关专业高年级本科生裥研究生教材,是无线通信领域工程技术人员必备参考书。
目录 1 Introduction 1
1.1 Book objective 1
1.2 Wireless systems 2
1.3 Book outline 5
2 The wireless channel 10
2.1 Physical modeling for wireless channels 10
2.1.1 Free space, fixed transmit and receive antennas 12
2.1.2 Free space, moving antenna 13
2.1.3 Reflecting wall, fixed antenna 14
2.1.4 Reflecting wall, moving antenna 16
2.1.5 Reflection from a ground plane 17
2.1.6 Power decay with distance and shadowing 18
2.1.7 Moving antenna, multiple reflectors 19
2.2 Input/output model of the wireless channel 20
2.2.1 The wireless channel as a linear time-varying system 20
2.2.2 Baseband equivalent model 22
2.2.3 A discrete-time baseband model 25
Discussion 2.1 Degrees of freedom 28
2.2.4 Additive white noise 29
2.3 Time and frequency coherence 30
2.3.1 Doppler spread and coherence time 30
2.3.2 Delay spread and coherence bandwidth 31
2.4 Statistical channel models 34
2.4.1 Modeling philosophy 34
2.4.2 Rayleigh and Rician fading 36
2.4.3 Tap gain auto-correlation function 37
Example 2.1 Clarke’s model 38
Chapter 2 The main plot 40
2.5 Bibliographical notes 42
2.6 Exercises 42
3 Point-to-point communication: detection, diversity, and channel ncertainty 49
3.1 Detection in a Rayleigh fading channel 50
3.1.1 Non-coherent detection 50
3.1.2 Coherent detection 52
3.1.3 From BPSK to QPSK: exploiting the degrees of freedom 56
3.1.4 Diversity 59
3.2 Time diversity 60
3.2.1 Repetition coding 60
3.2.2 Beyond repetition coding 64
Summary 3.1 Time diversity code design criterion 68
Example 3.1 Time diversity in GSM 69
3.3 Antenna diversity 71
3.3.1 Receive diversity 71
3.3.2 Transmit diversity: space-time codes 73
3.3.3 MIMO: a 2×2 example 77
Summary 3.2 2×2 MIMO schemes 82
3.4 Frequency diversity 83
3.4.1 Basic concept 83
3.4.2 Single-carrier with ISI equalization 84
3.4.3 Direct-sequence spread-spectrum 91
3.4.4 Orthogonal frequency division multiplexing 95
Summary 3.3 Communication over frequency-selective channels 101
3.5 Impact of channel uncertainty 102
3.5.1 Non-coherent detection for DS spread-spectrum 103
3.5.2 Channel estimation 105
3.5.3 Other diversity scenarios 107
Chapter 3 The main plot 109
3.6 Bibliographical notes 110
4 Cellular systems: multiple access and interference management 120
4.1 Introduction 120
4.2 Narrowband cellular systems 123
4.2.1 Narrowband allocations: GSM system 124
4.2.2 Impact on network and system design 126
4.2.3 Impact on frequency reuse 127
Summary 4.1 Narrowband systems 128
4.3 Wideband systems: CDMA 128
4.3.1 CDMA uplink 131
4.3.2 CDMA downlink 145
4.3.3 System issues 147
Summary 4.2 CDMA 147
4.4 Wideband systems: OFDM 148
4.4.1 Allocation design principles 148
4.4.2 Hopping pattern 150
4.4.3 Signal characteristics and receiver design 152
4.4.4 Sectorization 153
Example 4.1 Flash-OFDM 153
Chapter 4 The main plot 154
4.5 Bibliographical notes 155
4.6 Exercises 155
5 Capacity of wireless channels 166
5.1 AWGN channel capacity 167
5.1.1 Repetition coding 167
5.1.2 Packing spheres 168
Discussion 5.1 Capacity-achieving AWGN channel codes 170
Summary 5.1 Reliable rate of communication and capacity 171
5.2 Resources of the AWGN channel 172
5.2.1 Continuous-time AWGN channel 172
5.2.2 Power and bandwidth 173
Example 5.2 Bandwidth reuse in cellular systems 175
5.3 Linear time-invariant Gaussian channels 179
5.3.1 Single input multiple output (SIMO) channel 179
5.3.2 Multiple input single output (MISO) channel 179
5.3.3 Frequency-selective channel 181
5.4 Capacity of fading channels 186
5.4.1 Slow fading channel 187
5.4.2 Receive diversity 189
5.4.3 Transmit diversity 191
Summary 5.2 Transmit and receive diversity 195
5.4.4 Time and frequency diversity 195
Summary 5.3 Outage for parallel channels 199
5.4.5 Fast fading channel 199
5.4.6 Transmitter side information 203
Example 5.3 Rate adaptation in IS-856 209
5.4.7 Frequency-selective fading channels 213
5.4.8 Summary: a shift in point of view 213
Chapter 5 The main plot 214
5.5 Bibliographical notes 217
5.6 Exercises 217
6 Multiuser capacity and opportunistic communication 228
6.1 Uplink AWGN channel 229
6.1.1 Capacity via successive interference cancellation 229
6.1.2 Comparison with conventional CDMA 232
6.1.3 Comparison with orthogonal multiple access 232
6.1.4 General K -user uplink capacity 234
6.2 Downlink AWGN channel 235
6.2.1 Symmetric case: two capacity-achieving schemes 236
6.2.2 General case: superposition coding achieves capacity 238
Summary 6.1 Uplink and downlink AWGN capacity 240
Discussion 6.1 SIC: implementation issues 241
6.3 Uplink fading channel 243
6.3.1 Slow fading channel 243
6.3.2 Fast fading channel 245
6.3.3 Full channel side information 247
Summary 6.2 Uplink fading channel 250
6.4 Downlink fading channel 250
6.4.1 Channel side information at receiver only 250
6.4.2 Full channel side information 251
6.5 Frequency-selective fading channels 252
6.6 Multiuser diversity 253
6.6.1 Multiuser diversity gain 253
6.6.2 Multiuser versus classical diversity 256
6.7 Multiuser diversity: system aspects 256
6.7.1 Fair scheduling and multiuser diversity 258
6.7.2 Channel prediction and feedback 262
6.7.3 Opportunistic beamforming using dumb antennas 263
6.7.4 Multiuser diversity in multicell systems 270
6.7.5 A system view 272
Chapter 6 The main plot 275
6.8 Bibliographical notes 277
6.9 Exercises 278
7 MIMO I: spatial multiplexing and channel modeling 290
7.1 Multiplexing capability of deterministic MIMO channels 291
7.1.1 Capacity via singular value decomposition 291
7.1.2 Rank and condition number 294
7.2 Physical modeling of MIMO channels 295
7.2.1 Line-of-sight SIMO channel 296
7.2.2 Line-of-sight MISO channel 298
7.2.3 Antenna arrays with only a line-of-sight path 299
7.2.4 Geographically separated antennas 300
7.2.5 Line-of-sight plus one reflected path 306
Summary 7.1 Multiplexing capability of MIMO channels 309
7.3 Modeling of MIMO fading channels 309
7.3.1 Basic approach 309
7.3.2 MIMO multipath channel 311
7.3.3 Angular domain representation of signals 311
7.3.4 Angular domain representation of MIMO channels 315
7.3.5 Statistical modeling in the angular domain 317
7.3.6 Degrees of freedom and diversity 318
Example 7.1 Degrees of freedom in clustered response models 319
7.3.7 Dependency on antenna spacing 323
7.3.8 I.i.d.Rayleigh fading model 327
Chapter 7 The main plot 328
7.4 Bibliographical notes 329
7.5 Exercises 330
8 MIMO II: capacity and multiplexing architectures 332
8.1 The V-BLAST architecture 333
8.2 Fast fading MIMO channel 335
8.2.1 Capacity with CSI at receiver 336
8.2.2 Performance gains 338
8.2.3 Full CSI 346
Summary 8.1 Performance gains in a MIMO channel 348
8.3 Receiver architectures 348
8.3.1 Linear decorrelator 349
8.3.2 Successive cancellation 355
8.3.3 Linear MMSE receiver 356
8.3.4 Information theoretic optimality 362
Discussion 8.1 Connections with CDMA multiuser detection and ISI equalization 364
8.4 Slow fading MIMO channel 366
8.5 D-BLAST: an outage-optimal architecture 368
8.5.1 Suboptimality of V-BLAST 368
8.5.2 Coding across transmit antennas: D-BLAST 371
8.5.3 Discussion 372
Chapter 8 The main plot 373
8.6 Bibliographical notes 374
8.7 Exercises 374
9 MIMO III: diversity–multiplexing tradeoff and universal space-time codes 383
9.1 Diversity–multiplexing tradeoff 384
9.1.1 Formulation 384
9.1.2 Scalar Rayleigh channel 386
9.1.3 Parallel Rayleigh channel 390
9.1.4 MISO Rayleigh channel 391
9.1.5 2×2 MIMO Rayleigh channel 392
9.1.6 nt×nr MIMO i.i.d.Rayleigh channel 395
9.2 Universal code design for optimal diversity-multiplexing tradeoff 398
9.2.1 QAM is approximately universal for scalar channels 398
Summary 9.1 Approximate universality 400
9.2.2 Universal code design for parallel channels 400
Summary 9.2 Universal codes for the parallel channel 406
9.2.3 Universal code design for MISO channels 407
Summary 9.3 Universal codes for the MISO channel 410
9.2.4 Universal code design for MIMO channels 411
Discussion 9.1 Universal codes in the downlink 415
Chapter 9 The main plot 415
9.3 Bibliographical notes 416
9.4 Exercises 417
10 MIMO IV: multiuser communication 425
10.1 Uplink with multiple receive antennas 426
10.1.1 Space-division multiple access 426
10.1.2 SDMA capacity region 428
10.1.3 System implications 431
Summary 10.1 SDMA and orthogonal multiple access 432
10.1.4 Slow fading 433
10.1.5 Fast fading 436
10.1.6 Multiuser diversity revisited 439
Summary 10.2 Opportunistic communication and multiple receive antennas 442
10.2 MIMO uplink 442
10.2.1 SDMA with multiple transmit antennas 442
10.2.2 System implications 444
10.2.3 Fast fading 446
10.3 Downlink with multiple transmit antennas 448
10.3.1 Degrees of freedom in the downlink 448
10.3.2 Uplink–downlink duality and transmit beamforming 449
10.3.3 Precoding for interference known at transmitter 454
10.3.4 Precoding for the downlink 465
10.3.5 Fast fading 468
10.4 MIMO downlink 471
10.5 Multiple antennas in cellular networks: a system view 473
Summary 10.3 System implications of multiple antennas on multiple access 473
10.5.1 Inter-cell interference management 474
10.5.2 Uplink with multiple receive antennas 476
10.5.3 MIMO uplink 478
10.5.4 Downlink with multiple receive antennas 479
10.5.5 Downlink with multiple transmit antennas 479
Example 10.1 SDMA in ArrayComm systems 479
Chapter 10 The main plot 481
10.6 Bibliographical notes 482
10.7 Exercises 483
Appendix A Detection and estimation in additive Gaussian noise 496
Appendix B Information theory from first principles 516
References 546
Index 554
……
序言 The writing of this book was prompted by two main developments in wirelesscommunication in the past decade. First is the huge surge of research activitiesin physical-layer wireless communication theory. While this has been a subjectof study since the sixties, recent developments such as opportunistic and mul-tiple input multiple output (MIMO) communication techniques have broughtcompletely new perspectives on how to communicate over wireless channels.Second is the rapid evolution of wireless systems, particularly cellular net-works, which embody communication concepts of increasing sophistication.This evolution started with second-generation digital standards, particularlythe IS-95 Code Division Multiple Access standard, continuing to more recentthird-generation systems focusing on data applications. This book aims topresent modem wireless communication concepts in a coherent and unifiedmanner and to illustrate the concepts in the broader context of the wirelesssystems on which they have been applied.
文摘 插图:

Consider the baseband uplink signal of a user given in (4.1). Due to the abrupttransitions (from + 1 to -1 and vice versa) of the pseudonoise sequences s,,,the bandwidth occupied by this signal is very large. On the other hand, thesignal has to occupy an allotted bandwidth. As an example, we see that the IS-95 system uses a bandwidth of 1.2288 MHz and a steep fall off after 1.67 MHz.To fit this allotted bandwidth, the signal in (4.1) is passed through a pulseshaping filter and then modulated on to the carrier. Thus though the signal in(4.1) has a perfect PAPR (equal to 1), the resulting transmit signal has a largerPAPR. The overall signal transmitted from the base-station is the superpositionof all the user signals and this aggregate signal has PAPR performance similarto that of the narrowband system described in the previous section.In the narrowband system we saw that all users can maintain high SINRdue to the nature of the allocations. In fact, this was the benefit gained bypaying the price of poor (re)use of the spectrum. In the CDMA system,however, due to the intra and inter-cell interferences, the values of SINR possible are very small. Now consider sectorization with universal frequency reuse among the sectors. Ideally (with full isolation among the sectors), this allows us to increase the system capacity by a factor equal to the number of sectors. However, in practice each sector now has to contend with inter-sector interference as well. Since intra-sector and inter-cell interference dominate the noise faced by the user signals, the additional interference caused due to sectorization does not cause a further degradation in SINR. Thus sectors of the same cell reuse the frequency without much of an impact on the performance. We have observed that timing acquisition (at a chip level accuracy) by a mobile is a computationally intensive step. Thus we would like to have this step repeated as infrequen
……